Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combination of Gulf oil and dispersant spell potential trouble for gut microbes

23.10.2012
A study to be published in mBio®, the online open-access journal of the American Society for Microbiology, on Tuesday, October 23, examined whether crude oil from the 2010 Deepwater Horizon oil spill, the dispersant used on it, or a combination of the two might affect the microbes of the human digestive tract.

The researchers found that although high concentrations of oil combined with dispersant are detrimental to these helpful microbial communities, the low to undetectable concentrations typically found in Gulf shellfish had no discernable effect.

"The oil and the dispersant were not hazardous or toxic to the bacteria [at the tested concentrations], but when you combined them and increased the concentrations, you got a dose-response effect," says Carl Cerniglia of the National Center for Toxicological Research at the U.S. Food and Drug Administration (NCTR, FDA), a senior author on the study.

The Deepwater Horizon oil spill released roughly 4.9 million barrels of crude oil into the northern Gulf of Mexico in the spring and summer of 2010. To accelerate dispersion and enhance breakdown of the oil by microorganisms, 1.5 million gallons of the dispersant COREXIT 9500 were sprayed on the surface of the spill and applied at the underwater source of the leak. Concerns were soon raised about the safety of that dispersant for wildlife, plants, and humans alike. Oysters, shrimp, and other delicacies could well bioaccumulate oil or dispersant in their tissues, so eating contaminated shellfish presents one possible route by which humans could be exposed.

Although studies of the toxicity of crude oil and COREXIT 9500 to the human body have been carried out, science has not explored whether the dispersant or a mixture of oil and dispersant could have an impact on the microorganisms that line our intestinal tracts and aid in digestion, enhance immunity, and manufacture essential vitamins that the body absorbs.

Cerniglia and his colleagues combined human fecal samples, which are loaded with the microorganisms that reside in the intestines, with varying quantities of Deepwater Horizon crude oil and the dispersant, and then tested the samples to see how the microorganisms fared.

The crude oil and dispersant together had a greater toxic effect on the microbes present in the fecal samples, says Cerniglia, apparently because the dispersant is doing what it was designed to do: break up the oil blobs into smaller blobs with greater surface-to-volume ratios and greater bioavailability. "By adding the dispersant to the crude you're solubilizing the oil, which may make it more bioavailable to the organisms and create a potentially toxic response."

The oil and dispersant affected some types of bacteria more than others, says Cerniglia. In fecal samples from all three volunteers in the study that were treated with oil and dispersant, the abundance of Escherichia coli increased while the abundance of Bacteroides uniformis and uncultured Faecalibacterium were reduced. This is important because high densities of E. coli have been associated with greater susceptibility to foodborne infections.

Cerniglia cautions that although the findings reveal that dispersant and crude oil together can have a negative impact on the human microbiome, it is important to note that the concentrations of these materials in seafood are typically well below the concentrations used in this study.

"We had to get to the higher concentrations to see an effect," says Cerniglia. "And that's not a typical concentration that would be found in a residue analysis of seafood." Hence, although high concentrations of oil and dispersant can impact gut communities, there is no evidence to indicate shellfish harbor great enough quantities of these materials to have an effect. "It's almost like a worst case scenario, but that's the kind of information one needs to know in the beginning," so that scientists can eventually discern what safe levels of exposure to oil-dispersants mixtures might be.

Moving forward, Cerniglia says his group would like to expand the preliminary study to include samples from a greater number and variety of volunteers. "The microbiota of each individual is unique. We provided information with the three individuals' fecal samples that we used, but we'd like to expand that," Cerniglia says.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mBio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org
http://mBio.asm.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>