Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combination of Gulf oil and dispersant spell potential trouble for gut microbes

23.10.2012
A study to be published in mBio®, the online open-access journal of the American Society for Microbiology, on Tuesday, October 23, examined whether crude oil from the 2010 Deepwater Horizon oil spill, the dispersant used on it, or a combination of the two might affect the microbes of the human digestive tract.

The researchers found that although high concentrations of oil combined with dispersant are detrimental to these helpful microbial communities, the low to undetectable concentrations typically found in Gulf shellfish had no discernable effect.

"The oil and the dispersant were not hazardous or toxic to the bacteria [at the tested concentrations], but when you combined them and increased the concentrations, you got a dose-response effect," says Carl Cerniglia of the National Center for Toxicological Research at the U.S. Food and Drug Administration (NCTR, FDA), a senior author on the study.

The Deepwater Horizon oil spill released roughly 4.9 million barrels of crude oil into the northern Gulf of Mexico in the spring and summer of 2010. To accelerate dispersion and enhance breakdown of the oil by microorganisms, 1.5 million gallons of the dispersant COREXIT 9500 were sprayed on the surface of the spill and applied at the underwater source of the leak. Concerns were soon raised about the safety of that dispersant for wildlife, plants, and humans alike. Oysters, shrimp, and other delicacies could well bioaccumulate oil or dispersant in their tissues, so eating contaminated shellfish presents one possible route by which humans could be exposed.

Although studies of the toxicity of crude oil and COREXIT 9500 to the human body have been carried out, science has not explored whether the dispersant or a mixture of oil and dispersant could have an impact on the microorganisms that line our intestinal tracts and aid in digestion, enhance immunity, and manufacture essential vitamins that the body absorbs.

Cerniglia and his colleagues combined human fecal samples, which are loaded with the microorganisms that reside in the intestines, with varying quantities of Deepwater Horizon crude oil and the dispersant, and then tested the samples to see how the microorganisms fared.

The crude oil and dispersant together had a greater toxic effect on the microbes present in the fecal samples, says Cerniglia, apparently because the dispersant is doing what it was designed to do: break up the oil blobs into smaller blobs with greater surface-to-volume ratios and greater bioavailability. "By adding the dispersant to the crude you're solubilizing the oil, which may make it more bioavailable to the organisms and create a potentially toxic response."

The oil and dispersant affected some types of bacteria more than others, says Cerniglia. In fecal samples from all three volunteers in the study that were treated with oil and dispersant, the abundance of Escherichia coli increased while the abundance of Bacteroides uniformis and uncultured Faecalibacterium were reduced. This is important because high densities of E. coli have been associated with greater susceptibility to foodborne infections.

Cerniglia cautions that although the findings reveal that dispersant and crude oil together can have a negative impact on the human microbiome, it is important to note that the concentrations of these materials in seafood are typically well below the concentrations used in this study.

"We had to get to the higher concentrations to see an effect," says Cerniglia. "And that's not a typical concentration that would be found in a residue analysis of seafood." Hence, although high concentrations of oil and dispersant can impact gut communities, there is no evidence to indicate shellfish harbor great enough quantities of these materials to have an effect. "It's almost like a worst case scenario, but that's the kind of information one needs to know in the beginning," so that scientists can eventually discern what safe levels of exposure to oil-dispersants mixtures might be.

Moving forward, Cerniglia says his group would like to expand the preliminary study to include samples from a greater number and variety of volunteers. "The microbiota of each individual is unique. We provided information with the three individuals' fecal samples that we used, but we'd like to expand that," Cerniglia says.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mBio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org
http://mBio.asm.org

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>