Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combination of Direct Antivirals May Be Key to Curing Hep C

06.05.2010
A combination of antiviral drugs may be needed to combat the drug resistance that rapidly develops in potentially deadly hepatitis C infections, a new study using sophisticated computer and mathematical modeling has shown.

Using probabilistic and viral dynamic models, researchers at the University of Illinois at Chicago, Oakland University and Los Alamos National Laboratory predict why rapid resistance emerges in hepatitis C virus and show that a combination of drugs that can fight three or more mutated strains may be needed to eradicate the virus from the body. They compared their model with data from a clinical trial of the new direct-acting antiviral medication telaprevir.

The findings are published in Science Translational Medicine.

Hepatitis C is a progressive liver disease that can lead to cirrhosis and liver cancer. Current standard treatment is a combination of the antiviral drugs interferon and ribavirin for a period of 24 to 48 weeks -- a regimen that is long and expensive, carries side effects, and is successful only in about half of patients.

Intensive effort has focused on developing direct antiviral drugs. But the virus is genetically diverse, and so may be particularly prone to develop resistance, said Harel Dahari, research assistant professor of hepatology in the UIC College of Medicine and one of the paper's co-authors.

One way to combat resistance would be to administer multiple drugs, each with a different mechanism of inhibiting the virus.

"We found that rapid emergence of resistance to these types of drugs is due to a population of viruses already present, allowing the resistant virus to become the dominant strain," said Dahari.

The researchers suggest that a combination of new antiviral drugs will be needed to fight all of the resistant virus strains and achieve better cure rates for the disease.

"We are moving to a new era where we can treat these patients with direct-acting agents against the virus, in which we specifically target the life-cycle of the virus," Dahari said.

To replace the standard treatment, four or more different types of direct drugs may be needed, Dahari said. However, some patients may need fewer drugs. It depends on the level of the virus in their blood, among other factors.

It is frustrating for patients to go through a long, difficult treatment and know that they might not be cured, said Dr. Scott Cotler, associate professor of medicine at UIC and a hepatologist who treats patients at the University of Illinois Medical Center's Walter Payton Liver Center.

"Patients are looking forward to a day when they don't have to take interferon and ribavirin," said Cotler. "But as we are learning with this study, if we are going to need four different direct drugs, it is going to be awhile before we get there. Now at least we know where the goal line is."

Dahari suggests that future treatment that includes the standard treatment and direct antivirals, such as telaprevir or boceprevir, will be tailored to each patient and that using direct antivirals may also shorten the duration of treatment.

The research was funded by the U.S. Department of Energy, the National Institutes of Health, and the UIC Walter Payton Liver Center Guild. Co-authors on the study include Libin Rong, Ruy Ribeiro, and Alan Perelson from Oakland University and Los Alamos National Laboratory.

UIC ranks among the nation's leading research universities and is Chicago's largest university with 26,000 students, 12,000 faculty and staff, 15 colleges and the state's major public medical center. A hallmark of the campus is the Great Cities Commitment, through which UIC faculty, students and staff engage with community, corporate, foundation and government partners in hundreds of programs to improve the quality of life in metropolitan areas around the world.

Sherri McGinnis González | Newswise Science News
Further information:
http://www.uic.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>