Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia scientists identify key cells in touch sensation

07.04.2014

Skin cells use new molecule to send touch information to the brain

In a study published in the April 6 online edition of the journal Nature, a team of Columbia University Medical Center researchers led by Ellen Lumpkin, PhD, associate professor of somatosensory biology, solve an age-old mystery of touch: how cells just beneath the skin surface enable us to feel fine details and textures.


This video shows a Merkel cell responding to touch.

Credit: Lab of Ellen Lumpkin, Ph.D./ Columbia University Medical Center

Touch is the last frontier of sensory neuroscience. The cells and molecules that initiate vision—rod and cone cells and light-sensitive receptors—have been known since the early 20th century, and the senses of smell, taste, and hearing are increasingly understood. But almost nothing is known about the cells and molecules responsible for initiating our sense of touch.

This study is the first to use optogenetics—a new method that uses light as a signaling system to turn neurons on and off on demand—on skin cells to determine how they function and communicate.

... more about:
»Medicine »neurons »sense »skin

The team showed that skin cells called Merkel cells can sense touch and that they work virtually hand in glove with the skin's neurons to create what we perceive as fine details and textures.

"These experiments are the first direct proof that Merkel cells can encode touch into neural signals that transmit information to the brain about the objects in the world around us," Dr. Lumpkin said.

The findings not only describe a key advance in our understanding of touch sensation, but may stimulate research into loss of sensitive-touch perception.

Several conditions—including diabetes and some cancer chemotherapy treatments, as well as normal aging—are known to reduce sensitive touch. Merkel cells begin to disappear in one's early 20s, at the same time that tactile acuity starts to decline. "No one has tested whether the loss of Merkel cells causes loss of function with aging—it could be a coincidence—but it's a question we're interested in pursuing," Dr. Lumpkin said.

In the future, these findings could inform the design of new "smart" prosthetics that restore touch sensation to limb amputees, as well as introduce new targets for treating skin diseases such as chronic itch.

The study was published in conjunction with a second study by the team done in collaboration with the Scripps Research Institute. The companion study identifies a touch-activated molecule in skin cells, a gene called Piezo2, whose discovery has the potential to significantly advance the field of touch perception.

"The new findings should open up the field of skin biology and reveal how sensations are initiated," Dr. Lumpkin said. Other types of skin cells may also play a role in sensations of touch, as well as less pleasurable skin sensations, such as itch. The same optogenetics techniques that Dr. Lumpkin's team applied to Merkel cells can now be applied to other skin cells to answer these questions.

"It's an exciting time in our field because there are still big questions to answer, and the tools of modern neuroscience give us a way to tackle them," she said.

###

See movie of Merkel cell responding to touch: http://youtu.be/tU1jeOpjsTE

The authors declare no conflicts of interest.

The research was supported by NIH (R01AR051219, R21AR062307, R01DE022358, T32HL087745, F32NS080544, P30AR044535, P30CA013696, and P30CA125123), a Research Fellowship for Young Scientists from the Japan Society for the Promotion of Science (24-7585), and the McNair Foundation.

The other authors of the paper are: Srdjan Maksimovic (Columbia), Masashi Nakatani (Columbia and Keio University, Japan), Yoshichika Baba (Columbia), Aislyn Nelson (Columbia and Baylor College of Medicine), Kara Marshall (Columbia), Scott Wellnitz (Baylor), Pervez Firozi (Baylor), Seung-Hyun Woo (Scripps Research Institute), Sanjeev Ranade (Scripps), and Ardem Patapoutian (Scripps).

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

Karin Eskenazi | EurekAlert!

Further reports about: Medicine neurons sense skin

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>