Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia scientists identify key cells in touch sensation

07.04.2014

Skin cells use new molecule to send touch information to the brain

In a study published in the April 6 online edition of the journal Nature, a team of Columbia University Medical Center researchers led by Ellen Lumpkin, PhD, associate professor of somatosensory biology, solve an age-old mystery of touch: how cells just beneath the skin surface enable us to feel fine details and textures.


This video shows a Merkel cell responding to touch.

Credit: Lab of Ellen Lumpkin, Ph.D./ Columbia University Medical Center

Touch is the last frontier of sensory neuroscience. The cells and molecules that initiate vision—rod and cone cells and light-sensitive receptors—have been known since the early 20th century, and the senses of smell, taste, and hearing are increasingly understood. But almost nothing is known about the cells and molecules responsible for initiating our sense of touch.

This study is the first to use optogenetics—a new method that uses light as a signaling system to turn neurons on and off on demand—on skin cells to determine how they function and communicate.

... more about:
»Medicine »neurons »sense »skin

The team showed that skin cells called Merkel cells can sense touch and that they work virtually hand in glove with the skin's neurons to create what we perceive as fine details and textures.

"These experiments are the first direct proof that Merkel cells can encode touch into neural signals that transmit information to the brain about the objects in the world around us," Dr. Lumpkin said.

The findings not only describe a key advance in our understanding of touch sensation, but may stimulate research into loss of sensitive-touch perception.

Several conditions—including diabetes and some cancer chemotherapy treatments, as well as normal aging—are known to reduce sensitive touch. Merkel cells begin to disappear in one's early 20s, at the same time that tactile acuity starts to decline. "No one has tested whether the loss of Merkel cells causes loss of function with aging—it could be a coincidence—but it's a question we're interested in pursuing," Dr. Lumpkin said.

In the future, these findings could inform the design of new "smart" prosthetics that restore touch sensation to limb amputees, as well as introduce new targets for treating skin diseases such as chronic itch.

The study was published in conjunction with a second study by the team done in collaboration with the Scripps Research Institute. The companion study identifies a touch-activated molecule in skin cells, a gene called Piezo2, whose discovery has the potential to significantly advance the field of touch perception.

"The new findings should open up the field of skin biology and reveal how sensations are initiated," Dr. Lumpkin said. Other types of skin cells may also play a role in sensations of touch, as well as less pleasurable skin sensations, such as itch. The same optogenetics techniques that Dr. Lumpkin's team applied to Merkel cells can now be applied to other skin cells to answer these questions.

"It's an exciting time in our field because there are still big questions to answer, and the tools of modern neuroscience give us a way to tackle them," she said.

###

See movie of Merkel cell responding to touch: http://youtu.be/tU1jeOpjsTE

The authors declare no conflicts of interest.

The research was supported by NIH (R01AR051219, R21AR062307, R01DE022358, T32HL087745, F32NS080544, P30AR044535, P30CA013696, and P30CA125123), a Research Fellowship for Young Scientists from the Japan Society for the Promotion of Science (24-7585), and the McNair Foundation.

The other authors of the paper are: Srdjan Maksimovic (Columbia), Masashi Nakatani (Columbia and Keio University, Japan), Yoshichika Baba (Columbia), Aislyn Nelson (Columbia and Baylor College of Medicine), Kara Marshall (Columbia), Scott Wellnitz (Baylor), Pervez Firozi (Baylor), Seung-Hyun Woo (Scripps Research Institute), Sanjeev Ranade (Scripps), and Ardem Patapoutian (Scripps).

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

Karin Eskenazi | EurekAlert!

Further reports about: Medicine neurons sense skin

More articles from Studies and Analyses:

nachricht Study calculates the speed of ice formation
04.08.2015 | Princeton University

nachricht Research investigates whether solar events could trigger birth defects on Earth
21.07.2015 | University of Kansas

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greenhouse gases' millennia-long ocean legacy

Continuing current carbon dioxide (CO2) emission trends throughout this century and beyond would leave a legacy of heat and acidity in the deep ocean. These...

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Success 4.0 – Is Your Company Fit for the Future? New Series of Events for Executives

04.08.2015 | Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

 
Latest News

Small tilt in magnets makes them viable memory chips

04.08.2015 | Information Technology

New Design Brings World’s First Solar Battery to Performance Milestone

04.08.2015 | Power and Electrical Engineering

Magnetism at Nanoscale

04.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>