Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia scientists identify key cells in touch sensation

07.04.2014

Skin cells use new molecule to send touch information to the brain

In a study published in the April 6 online edition of the journal Nature, a team of Columbia University Medical Center researchers led by Ellen Lumpkin, PhD, associate professor of somatosensory biology, solve an age-old mystery of touch: how cells just beneath the skin surface enable us to feel fine details and textures.


This video shows a Merkel cell responding to touch.

Credit: Lab of Ellen Lumpkin, Ph.D./ Columbia University Medical Center

Touch is the last frontier of sensory neuroscience. The cells and molecules that initiate vision—rod and cone cells and light-sensitive receptors—have been known since the early 20th century, and the senses of smell, taste, and hearing are increasingly understood. But almost nothing is known about the cells and molecules responsible for initiating our sense of touch.

This study is the first to use optogenetics—a new method that uses light as a signaling system to turn neurons on and off on demand—on skin cells to determine how they function and communicate.

... more about:
»Medicine »neurons »sense »skin

The team showed that skin cells called Merkel cells can sense touch and that they work virtually hand in glove with the skin's neurons to create what we perceive as fine details and textures.

"These experiments are the first direct proof that Merkel cells can encode touch into neural signals that transmit information to the brain about the objects in the world around us," Dr. Lumpkin said.

The findings not only describe a key advance in our understanding of touch sensation, but may stimulate research into loss of sensitive-touch perception.

Several conditions—including diabetes and some cancer chemotherapy treatments, as well as normal aging—are known to reduce sensitive touch. Merkel cells begin to disappear in one's early 20s, at the same time that tactile acuity starts to decline. "No one has tested whether the loss of Merkel cells causes loss of function with aging—it could be a coincidence—but it's a question we're interested in pursuing," Dr. Lumpkin said.

In the future, these findings could inform the design of new "smart" prosthetics that restore touch sensation to limb amputees, as well as introduce new targets for treating skin diseases such as chronic itch.

The study was published in conjunction with a second study by the team done in collaboration with the Scripps Research Institute. The companion study identifies a touch-activated molecule in skin cells, a gene called Piezo2, whose discovery has the potential to significantly advance the field of touch perception.

"The new findings should open up the field of skin biology and reveal how sensations are initiated," Dr. Lumpkin said. Other types of skin cells may also play a role in sensations of touch, as well as less pleasurable skin sensations, such as itch. The same optogenetics techniques that Dr. Lumpkin's team applied to Merkel cells can now be applied to other skin cells to answer these questions.

"It's an exciting time in our field because there are still big questions to answer, and the tools of modern neuroscience give us a way to tackle them," she said.

###

See movie of Merkel cell responding to touch: http://youtu.be/tU1jeOpjsTE

The authors declare no conflicts of interest.

The research was supported by NIH (R01AR051219, R21AR062307, R01DE022358, T32HL087745, F32NS080544, P30AR044535, P30CA013696, and P30CA125123), a Research Fellowship for Young Scientists from the Japan Society for the Promotion of Science (24-7585), and the McNair Foundation.

The other authors of the paper are: Srdjan Maksimovic (Columbia), Masashi Nakatani (Columbia and Keio University, Japan), Yoshichika Baba (Columbia), Aislyn Nelson (Columbia and Baylor College of Medicine), Kara Marshall (Columbia), Scott Wellnitz (Baylor), Pervez Firozi (Baylor), Seung-Hyun Woo (Scripps Research Institute), Sanjeev Ranade (Scripps), and Ardem Patapoutian (Scripps).

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

Karin Eskenazi | EurekAlert!

Further reports about: Medicine neurons sense skin

More articles from Studies and Analyses:

nachricht Risk Perception: Social Exchange Can Amplify Subjective Fears
21.04.2015 | Max-Planck-Institut für Bildungsforschung

nachricht Mental Disorders and Physical Diseases Co-occur in Teenagers
08.04.2015 | Universität Basel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Electrons Move Like Light in Three-Dimensional Solid

24.04.2015 | Materials Sciences

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015 | Materials Sciences

Understanding the Body’s Response to Worms and Allergies

24.04.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>