Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Color-Changing “Blast Badge” Detects Exposure to Explosive Shock Waves

30.11.2010
Penn Neurosurgeons, Engineers Developing Inexpensive, Easy Way to Relate Soldiers’ Exposure to Possible Brain Injury

Mimicking the reflective iridescence of a butterfly's wing, investigators at the University of Pennsylvania School of Medicine and School of Engineering and Applied Sciences have developed a color-changing patch that could be worn on soldiers' helmets and uniforms to indicate the strength of exposure to blasts from explosives in the field.

Future studies aim to calibrate the color change to the intensity of exposure to provide an immediate read on the potential harm to the brain and the subsequent need for medical intervention. The findings are described in the ahead-of-print online issue of NeuroImage.

“We wanted to create a ‘blast badge’ that would be lightweight, durable, power-free, and perhaps most important, could be easily interpreted, even on the battlefield”, says senior author Douglas H. Smith, MD, director of the Center for Brain Injury and Repair and professor of Neurosurgery at Penn. “Similar to how an opera singer can shatter glass crystal, we chose color-changing crystals that could be designed to break apart when exposed to a blast shockwave, causing a substantial color change.”

D. Kacy Cullen, PhD, assistant professor of Neurosurgery, and Shu Yang, PhD, associate professor of Materials Science and Engineering, were co-authors with Smith.

Blast-induced traumatic brain injury is the "signature wound" of the current wars in Iraq and Afghanistan. However, with no objective information of relative blast exposure, soldiers with brain injury may not receive appropriate medical care and are at risk of being returned to the battlefield too soon.

“Diagnosis of mild traumatic brain injury [TBI] is challenging under most circumstances, as subtle or slowly progressive damage to brain tissue occurs in a manner undetectable by conventional imaging techniques,” notes Cullen. There is also a debate as to whether mild TBI is confused with post-traumatic stress syndrome. “This emphasizes the need for an objective measure of blast exposure to ensure solders receive proper care,” he says.

Sculpted by Lasers

The badges are comprised of nanoscale structures, in this case pores and columns, whose make-up preferentially reflects certain wavelengths. Lasers sculpt these tiny shapes into a plastic sheet.

Yang’s group pioneered this microfabrication of three-dimensional photonic structures using holographic lithography. “We came up the idea of using three-dimensional photonic crystals as a blast injury dosimeter because of their unique structure-dependent mechanical response and colorful display,” she explains. Her lab made the materials and characterized the structures before and after the blast to understand the color-change mechanism.

"It looks like layers of Swiss cheese with columns in between," explains Smith. Although very stable in the presence of heat, cold or physical impact, the nanostructures are selectively altered by blast exposure. The shockwave causes the columns to collapse and the pores to grow larger, thereby changing the material's reflective properties and outward color. The material is designed so that the extent of the color change corresponds with blast intensity.

The blast-sensitive material is added as a thin film on small round badges the size of fill-in-the-blank circles on a multiple-choice test that could be sewn onto a soldier's uniform.

In addition to use as a blast sensor for brain injury, other applications include testing blast protection of structures, vehicles and equipment for military and civilian use.

This research was funded by the Philadelphia Institute of Nanotechnology, and supported in part by the Office of Naval Research and the Air Force Office of Scientific Research.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $3.6 billion enterprise.

Penn’s School of Medicine is currently ranked #2 in U.S. News & World Report’s survey of research-oriented medical schools, and is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $367.2 million awarded in the 2008 fiscal year.

Penn Medicine’s patient care facilities include:

The Hospital of the University of Pennsylvania – the nation’s first teaching hospital, recognized as one of the nation’s top 10 hospitals by U.S. News & World Report.

Penn Presbyterian Medical Center – named one of the top 100 hospitals for cardiovascular care by Thomson Reuters for six years.

Pennsylvania Hospital – the nation’s first hospital, founded in 1751, nationally recognized for excellence in orthopaedics, obstetrics & gynecology, and psychiatry & behavioral health.

Additional patient care facilities and services include Penn Medicine at Rittenhouse, a Philadelphia campus offering inpatient rehabilitation and outpatient care in many specialties; as well as a primary care provider network; a faculty practice plan; home care and hospice services; and several multispecialty outpatient facilities across the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2009, Penn Medicine provided $733.5 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>