Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collaborative Penn-Dresden Study Blocks Multiple Sclerosis Relapses in Mice

12.11.2014

In multiple sclerosis, the immune system goes rogue, improperly attacking the body’s own central nervous system. Mobility problems and cognitive impairments may arise as the nerve cells become damaged.

In a new study, researchers from the University of Pennsylvania and co-investigators have identified a key protein that is able to reduce the severity of a disease equivalent to MS in mice. This molecule, Del-1, is the same regulatory protein that has been found to prevent inflammation and bone loss in a mouse model of gum disease.


Del-1, a protein that blocks inflammation in the gums, was also discovered to be expressed in the brain.

“We see that two completely different disease entities share a common pathogenic mechanism,” said George Hajishengallis, a professor of microbiology in Penn’s School of Dental Medicine and an author on the study. “And in this case that means that they can even share therapeutic targets, namely Del-1.”

Because Del-1 has been found to be associated with susceptibility to not only multiple sclerosis, but also Alzheimer’s, it’s possible that a properly functioning version of this protein might help guard against that disease’s effects as well.

Penn contributors to the study included Hajishengallis, Penn Dental Medicine postdoctoral researcher Kavita Hosur and Khalil Bdeir, a research associate professor at Penn’s Perelman School of Medicine. They collaborated with senior author Triantafyllos Chavakis of Germany’s Technical University Dresden and researchers from South Korea’s University of Ulsan College of Medicine and other institutions. The work appears online in the journal Molecular Psychiatry.

In earlier studies, Hajishengallis, Chavakis and colleagues found that Del-1 acts as a gatekeeper that thwarts the movement and accumulation of immune cells like neutrophils, reducing inflammation. While neutrophils are needed to effectively respond to infection or injury, when too many of them accumulate in a tissue, the resulting inflammation can itself be damaging.

Hajishengallis has found that gum tissue affected by periodontitis, a severe form of gum disease associated with inflammation and bone loss— had lower levels of Del-1 than healthy tissue. Administering Del-1 directly to the gums protected against these effects.

While researching Del-1 in other tissues, such as gums and lungs, Hajishengallis and Chavakis found that Del-1 was also highly expressed in the brain. In addition, genome-wide screens indicate that the Del-1 gene may contribute to multiple sclerosis risk. For these reasons, the scientists hypothesized that Del-1 might prevent inflammation in the central nervous system just as it does in the gum tissue.

To test their theory, the researchers examined Del-1 expression in brain tissue from people who had died from MS. In MS patients with chronic active MS lesions, Del-1 was reduced compared to both healthy brain tissue and brain tissue from MS patients who were in remission at the time of their death. Similarly, Del-1 expression was reduced in the spinal cords of mice with the rodent equivalent of MS, experimental autoimmune encephalomyelitis (EAE).

Having confirmed this association between reduced Del-1 and MS and EAE, the scientists wanted to see if the reduction itself played a causal role in the disease.

Hajishengallis’s and Chavakis’s labs had previously utilized mice that lack Del-1 alone or Del-1 together with other molecules of the immune system. The researchers found that mutant mice lacking Del-1 had more severe attacks of the EAE than normal mice, with more damage to myelin, the fatty sheath that coats neurons and helps in the transmission of signals along the cell. Loss of this substance is the hallmark of MS and other neurodegenerative diseases.

Mice without Del-1 that had been induced to get EAE also had significantly higher numbers of inflammatory cells in their spinal cords at the disease’s peak, a fact that further experiments revealed was due to increased levels of the signaling molecule IL-17.

Mice that were induced to get EAE that lacked both Del-1 and the receptor for IL-17 had a much milder form of the disease compared to mice that lacked only Del-1. These doubly depleted mice also had fewer neutrophils and inflammation in their spinal cords.

With a greater understanding of how Del-1 acts in EAE, the researchers were curious whether simply replacing Del-1 might act as a therapy for the disease. They waited until mice had had an EAE attack, akin to a flare-up of MS in human patients, and then administered Del-1. They were pleased to find that these mice did not experience further episodes of the disease.

“This treatment prevented further disease relapse,” Chavakis said. “Thus, administration of soluble Del-1 may provide the platform for developing novel therapeutic approaches for neuroinflammatory and demyelinating diseases, especially multiple sclerosis.”

The team is pursuing further work on Del-1 to see if they can identify a subunit of the protein that could have the same therapeutic effect.

“It’s amazing that our work in periodontitis have found application in a central nervous system disease,” Hajishengallis said. “This shows that periodontitis can be a paradigm for other medically important inflammatory diseases.”

The study was supported by the National Research Foundation of Korea, the Novartis Foundation for Therapeutical Research, the NIH Intramural Research Program, the National Cancer Institute, the Extramural Program of the National Institute of Dental and Craniofacial Research, The Deutsche Forschungsgemeinschaft and the European Research Council.

Katherine Unger Baillie | EurekAlert!
Further information:
http://www.upenn.edu/pennnews/news/collaborative-penn-dresden-study-blocks-multiple-sclerosis-relapses-mice

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>