Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues about ancient water cycles shed light on US deserts

28.09.2012
The deserts of Utah and Nevada have not always been dry.

Between 14,000 and 20,000 years ago, when large ice caps covered Canada during the last glacial cooling, valleys throughout the desert southwest filled with water to become large lakes, scientists have long surmised. At their maximum size, the desert lakes covered about a quarter of both Nevada and Utah.

Now a team led by a Texas A&M University researcher has found a new water cycle connection between the U.S. southwest and the tropics, and understanding the processes that have brought precipitation to the western U.S. will help scientists better understand how the water cycle might be perturbed in the future.

Mitch Lyle, professor of oceanography, led the study with colleagues from Columbia University, University of California-Santa Cruz, Stanford University, Hokkaido University of Japan, Brown University and the U.S. Geological Survey. Their work, funded by the National Science Foundation, is published in the current issue of Science magazine.

The dry shorelines of these glacial lakes were first discovered by 19th century geologists when the west was first explored, Lyle explains, adding that the source of the additional water has been a mystery. By assembling data from ocean sediments and from dry western valleys collected over the last 30 years, Lyle and the team found a new water cycle connection between the southwest U.S. and the tropics.

"Large ice caps profoundly altered where storms went during glacial periods. Before this study, it was assumed that Pacific winter storms that now track into Washington and Canada were pushed south into central and southern California," Lyle notes.

"However, by comparing timing between wet intervals on the coast, where these storms would first strike, with growth of the inland lakes, we found that they didn't match."

The team was able to time wet periods along the California coast from pollen buried in marine sediments from cores archived by scientists at the Integrated Ocean Drilling Program at Texas A&M. They evaluated lake level studies from southeast Oregon, Nevada, Utah, eastern California, New Mexico, and west Texas to find when lakes filled in different parts of the west.

"Many teams of scientists have been working on this problem since the 1950s, when radiocarbon dating first allowed ages to be put on old shorelines," Lyle adds. "The data we synthesized covers a wide latitude so that we could determine how the glacial wet intervals operated."

Only southern California coastal wet intervals matched with the progression of high lakes inland, pointing to the development of a tropical connection, where storms cycled into the region from the tropical Pacific, west of southern Mexico.

"We think that the extra precipitation may have come in summer, enhancing the now weak summer monsoon in the desert southwest. But we need more information about what season the storms arrived to strengthen this speculation," Lyle says.

Not only is the development of the glacial lakes important from a paleoclimate perspective, but it is likely that the lakes were important to the migration of people into North America, Lyle believes. Many of the archaeological sites where early Indians settled when they first came into the U.S. are rock shelters at the edges of these ancient lakes. The lakes were a major source of fish, and a gathering place for deer and wildfowl at that time.

"What we need to do now is look at all of this on a finer scale," Lyle points out. "We need to understand better the processes that directed the storms thousands of years ago, and to predict better what changes might occur in the future."

About Research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $700 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Media contact: Keith Randall, News & Information Services, at (979) 845-4644 or keith-randall@tamu.edu or Mitch Lyle at (979) 845-3380 or mlyle@ocean.tamu.edu

More news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at http://twitter.com/tamu/

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

Further reports about: Pacific coral glacial lakes glacial period ice caps water cycle

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>