Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues about ancient water cycles shed light on US deserts

28.09.2012
The deserts of Utah and Nevada have not always been dry.

Between 14,000 and 20,000 years ago, when large ice caps covered Canada during the last glacial cooling, valleys throughout the desert southwest filled with water to become large lakes, scientists have long surmised. At their maximum size, the desert lakes covered about a quarter of both Nevada and Utah.

Now a team led by a Texas A&M University researcher has found a new water cycle connection between the U.S. southwest and the tropics, and understanding the processes that have brought precipitation to the western U.S. will help scientists better understand how the water cycle might be perturbed in the future.

Mitch Lyle, professor of oceanography, led the study with colleagues from Columbia University, University of California-Santa Cruz, Stanford University, Hokkaido University of Japan, Brown University and the U.S. Geological Survey. Their work, funded by the National Science Foundation, is published in the current issue of Science magazine.

The dry shorelines of these glacial lakes were first discovered by 19th century geologists when the west was first explored, Lyle explains, adding that the source of the additional water has been a mystery. By assembling data from ocean sediments and from dry western valleys collected over the last 30 years, Lyle and the team found a new water cycle connection between the southwest U.S. and the tropics.

"Large ice caps profoundly altered where storms went during glacial periods. Before this study, it was assumed that Pacific winter storms that now track into Washington and Canada were pushed south into central and southern California," Lyle notes.

"However, by comparing timing between wet intervals on the coast, where these storms would first strike, with growth of the inland lakes, we found that they didn't match."

The team was able to time wet periods along the California coast from pollen buried in marine sediments from cores archived by scientists at the Integrated Ocean Drilling Program at Texas A&M. They evaluated lake level studies from southeast Oregon, Nevada, Utah, eastern California, New Mexico, and west Texas to find when lakes filled in different parts of the west.

"Many teams of scientists have been working on this problem since the 1950s, when radiocarbon dating first allowed ages to be put on old shorelines," Lyle adds. "The data we synthesized covers a wide latitude so that we could determine how the glacial wet intervals operated."

Only southern California coastal wet intervals matched with the progression of high lakes inland, pointing to the development of a tropical connection, where storms cycled into the region from the tropical Pacific, west of southern Mexico.

"We think that the extra precipitation may have come in summer, enhancing the now weak summer monsoon in the desert southwest. But we need more information about what season the storms arrived to strengthen this speculation," Lyle says.

Not only is the development of the glacial lakes important from a paleoclimate perspective, but it is likely that the lakes were important to the migration of people into North America, Lyle believes. Many of the archaeological sites where early Indians settled when they first came into the U.S. are rock shelters at the edges of these ancient lakes. The lakes were a major source of fish, and a gathering place for deer and wildfowl at that time.

"What we need to do now is look at all of this on a finer scale," Lyle points out. "We need to understand better the processes that directed the storms thousands of years ago, and to predict better what changes might occur in the future."

About Research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $700 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Media contact: Keith Randall, News & Information Services, at (979) 845-4644 or keith-randall@tamu.edu or Mitch Lyle at (979) 845-3380 or mlyle@ocean.tamu.edu

More news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at http://twitter.com/tamu/

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

Further reports about: Pacific coral glacial lakes glacial period ice caps water cycle

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>