Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clue to switch of bladder cancer from locally contained to invasive found by Jefferson scientists

17.05.2010
Bladder cancer often becomes aggressive and spreads in patients despite treatment, but now researchers at the Kimmel Cancer Center at Jefferson have identified a protein they believe is involved in pushing tumors to become invasive – and deadly.

"We have found that IGF-IR is a critical regulator of motility and invasion of bladder cancer cells, and this could offer us a novel molecular target to treat patients with this cancer in order to prevent metastasis," said the lead investigator, Andrea Morrione, Ph.D., a research associate professor of Urology at Jefferson Medical College, and director of Urology Research, Kimmel Cancer Center.

This finding is promising, they say in the June issue of American Journal of Pathology, because there are about a dozen agents targeted against the protein, the insulin-like growth factor receptor I (IGF-IR), that are now undergoing clinical testing to treat a variety of patient tumors.

"Testing presence of the protein could also serve as a novel tumor biomarker for diagnosis, and possibly prognosis of bladder tumors," he added.

Although bladder cancer is common, the molecular mechanisms that push the cancer to become invasive and to spread are still poorly understood, say the researchers. Although most bladder cancers are caught early and treated, they often come back and become aggressive, despite subsequent therapy with surgery, chemotherapy, or immunotherapy.

In this study, the researchers looked at the role of the protein receptor for the growth factor IGF-I, an important modulator of cell proliferation in bladder cancer cells. They found that although activation of IGF-IR did not affect growth of bladder cancer cells, it did promote the migration and invasion of these cells. The researchers showed that IGF-IR activated other molecules in cancer-promoting pathways (Akt and MAPK) that allow cancer cells to break its bond with other cells in a tumor in order to travel to others sites in the body.

"These data seem to indicate that this protein receptor may play a more prominent role in later stages of bladder cancer, not in the initiation of the cancer," said Dr. Morrione.

Additional work is needed to validate the role of IGF-IR in pushing bladder cancer into an invasive form, but if the results continue to be promising, it might be possible to test anti IGF-IR therapies in bladder cancer and to see how effective a test for these proteins in bladder tumor biopsies might predict cancer spread, the researchers say.

The study was funded by the Benjamin Perkins Bladder Cancer Fund and the National Institute of Health.

The authors declare no conflicts of interest.

Emily Shafer | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>