Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate variability and conflict risk in East Africa measured by Boulder team

23.10.2012
While a new study led by the University of Colorado Boulder shows the risk of human conflict in East Africa increases somewhat with hotter temperatures and drops a bit with higher precipitation, it concludes that socioeconomic, political and geographic factors play a much more substantial role than climate change.

According to CU-Boulder geography Professor John O'Loughlin, the new CU-Boulder study undertaken with the National Center for Atmospheric Research in Boulder is an attempt to clarify the often-contradictory debate on whether climate change is affecting armed conflicts in Africa.

"We wanted to get beyond the specific idea and hype of climate wars," he said. "The idea was to bring together a team perspective to see if changes in rainfall and temperature led to more conflict in vulnerable areas of East Africa."

The research team examined extensive climate datasets from nine countries in East Africa, including the Horn of Africa, between 1990 and 2009: Burundi, Djibouti, Eritrea, Ethiopia, Kenya, Rwanda, Somalia, Tanzania and Uganda. The team also used a dataset containing more than 16,000 violent conflicts in those countries during that time period, parsing out more specific information on conflict location and under what type of political, social, economic and geographic conditions each incident took place.

The study, which included changes in precipitation and temperature over continuous six-month periods from 1949 to 2009, also showed there was no climate effect on East African conflicts during normal and drier precipitation periods or during periods of average and cooler temperatures, said O'Loughlin.

Moderate increases in temperature reduced the risk of conflict slightly after controlling for the influence of social and political conditions, but very hot temperatures increased the risk of conflict, said O'Loughlin. Unusually wet periods also reduced the risk of conflict, according to the new study.

"The relationship between climate change and conflict in East Africa is incredibly complex and varies hugely by country and time period," he said. "The simplistic arguments we hear on both sides are not accurate, especially those by pessimists who talk about 'climate wars'. Compared to social, economic and political factors, climate factors adding to conflict risk are really quite modest."

The results are being published online Oct. 22 in the Proceedings of the National Academy of Sciences. Co-authors on the study include CU-Boulder Research Associate Frank Witmer and graduate student Andrew Linke as well as three scientists from the National Center for Atmospheric research -- Arlene Laing, Andrew Gettelman and Jimy Dudhia. The National Science Foundation funded the study.

Much of the information on the 16,359 violent events in East Africa from 1990 to 2009 came from the Armed Conflict Location and Event Dataset, or ACLED, directed by Clionadh Raleigh of Trinity College in Dublin. The database covers individual conflicts from 1997 to 2009 in Africa, parts of Asia and Haiti – more than 60,000 violent incidents to date. Raleigh started the data collection while earning her doctorate at CU in 2007 under O'Loughlin.

In addition, more than a dozen CU-Boulder undergraduates spent thousands of hours combing online information sources like LexisNexis -- a corporation that pioneered the electronic accessibility of legal and newspaper documents -- in order to fill in details of individual violent conflicts by East African countries from 1990 to 1997. The student work was funded by the NSF's Research Experiences for Undergraduates program.

The CU students coded each conflict event with very specific data, including geographic location coordinates, dates, people and descriptive classifications. The event information was then aggregated into months and into 100-kilometer grid cells that serve as the units of analysis for quantitative modeling.

Each conflict grid also was coded by socioeconomic and political characteristics like ethnic leadership, distance to an international border, capital city, local population size, well-being as measured by infant mortality, the extent of political rights, presidential election activity, road network density, the health of vegetation and crop conditions.

"The effects of climate variability on conflict risk is different in different countries," O'Loughlin said. "Typically conflicts are very local and quite confined. The effects of climate on conflict in Ethiopia, for example, are different than those in Tanzania or Somalia. The idea that there is a general 'African effect' for conflict is wrong."

The researchers used a variety of complex statistical calculations to assess the role of climate in violent conflict in East Africa, including regression models and a technique to uncover nonlinear influences and decrease "noise," said O'Loughlin, also a faculty member at CU-Boulder's Institute of Behavioral Science.

One component of the methods used by the team extracts predictions of individual instances of conflict from the statistical model and systematically compared them with the actual observations of conflict in the data, "a rigorous validity check," he said.

Catastrophic conflicts like those in the "Great Lakes region" -- Rwanda, Burundi, Uganda and the eastern Democratic Republic of the Congo -- since the 1990s and the war with the Lord's Resistance Army led by terrorist Joseph Kony that has been running since the late 1980s in northern Uganda and neighboring regions are marked with large red swaths on the maps.

Legacies of violence are extremely important for understanding and explaining unrest, he said. "Violence nearby and prior violence in the locality, especially for heavily populated areas, are the strongest predictors of conflict."

Ongoing work is extending the study to all of sub-Saharan Africa since 1980 with a database of 63,000 violent events. Preliminary results from the work confirm the East African climate effects of higher than normal temperatures are increasing conflict risk.

Contact:

John O'Loughlin, 303-492-1619
Johno@colorado.edu
Jim Scott, CU media relations, 303-492-3114
Jim.Scott@colorado.edu

John O'Loughlin | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>