Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Forecasts Shown to Warn of Crop Failures

23.07.2013
Climate data can help predict some crop failures several months before harvest, according to a new study from an international team, including a research scientist at NASA's Goddard Space Flight Center in Greenbelt, Md.

Scientists found that in about one-third of global cropland, temperature and soil moisture have strong relationships to the yield of wheat and rice at harvest. For those two key crops, a computer model could predict crop failures three months in advance for about 20 percent of global cropland, according to the study, published July 21 in Nature Climate Change.


Rice and wheat crop failures can be forecast using climate and crop models in some cases, according to a new study. Above, a wheat field in Nebraska
Image Credit: USDA

"You can estimate ultimate yields according to the climatic condition several months before," said Molly Brown, with Goddard's Biospheric Sciences Laboratory. "From the spring conditions, the preexisting conditions, the pattern is set."

The scientists wanted to examine the reliability and timeliness of crop failure forecasts in order for governments, insurers and others to plan accordingly. The research team, led by Toshichika Iizumi with the National Institute for Agro-Environmental Sciences in Tsukuba, Japan, created and tested a new crop model, incorporating temperature and precipitation forecasts and satellite observations from 1983 to 2006. They then examined how well those data predicted the crop yield or crop failure that actually occurred at the end of each season. For example, by looking at the temperature and soil moisture in June of a given year, they were hoping to predict the success of a corn harvest in August and September.

The team studied four crops – corn, soybeans, wheat and rice – but the model proved most useful for wheat and rice. Crop failures in regions of some major wheat and rice exporters, such as Australia and Uruguay, could be predicted several months in advance, according to the study. The model also forecasted some minor changes in crop yield, not just the devastating crop failures resulting from severe droughts or other weather extremes.

"The impact of climate extremes – the kind of events that have a large impact on global production – is more predictable than smaller variations in climate, but even variations of 5 percent in yield were correctly simulated in the study for many parts of the globe," said Andy Challinor, a co-author of the study and a professor with the University of Leeds in the United Kingdom.

Economic factors, including agricultural technology, fertilizer, seeds and irrigation infrastructure, are key to determining how much a farmer can grow, Brown said. A farmer with costly equipment and high-yielding varieties can efficiently plant seeds and grow more productive crops than a farmer planting low-yielding varieties, one seed at a time. Farmers in the United States, for example, can grow about 10 times more corn per acre than farmers in Zimbabwe.

But if economics set the bar for crop yield, other factors – including climate – can still cause variations that lead to good years and devastating years.

"We're trying to bound how much the weather matters. For particular crops in particular places it makes a huge difference, especially with wheat," Brown said. "This paper gives us the tools we need to understand the sources of variability outside of the economic sphere."

While climate's role in crop yields and failures may seem intuitive, it's difficult to demonstrate in part because of the overwhelming influence of social and economic factors, Brown said. But integrating climate and economic predictions can lead to a better understanding of crop yields and failures – especially in a changing climate.

This paper is an initial step in a much larger effort to allow farmers in poor countries to get better harvests in years with good growing conditions, and build resiliency for the other years, Brown said.

For example, if satellite data and climate models forecast a good season for rice before seeds are even planted, farmers or communities could get loans to invest in technologies to take advantage of the good weather, while insurers could keep insurance premiums low. If the forecast calls for a poor growing season, the loans would be smaller and insurance premiums larger. It could work as both a social safety net for agricultural communities, Brown said, as well as encourage communities and governments to invest in the infrastructure needed to take advantage of those good years.

"We can make a new framework that would allow much greater exploitation of satellite data and climate prediction models," she said. "If you knew you were going to have a good year, you could plan, you could give out loans, you could do other things to boost food production to be prepared for bad years."

Kate Ramsayer
NASA's Goddard Space Flight Center

Kate Ramsayer | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/climate-forecasts-shown-to-warn-of-crop-failures/#.Ue2YjW3xSN-

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>