Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change's future impact uncertain on Midwest water cycle, Dartmouth-led study finds

19.05.2015

Will climate change make the U.S. Midwest drier or wetter during the summer growing season? A new Dartmouth-led study finds that the answer remains uncertain.


A Dartmouth College-led study finds that it remains uncertain whether climate change will make the US Midwest drier or wetter during the summer growing season for corn and other crops.

Credit: Andreas Krappweis

The findings are important given the Midwest's agricultural output is critical to the U.S. economy and global food security.

The study appears in the journal Water Resources Research. A PDF is available on request. The study included researchers from Dartmouth College, Columbia University, National University of Singapore and Massachusetts Institute of Technology.

A potential consequence of climate change is significant modification of the water cycle in farming areas, such as the Midwest. Multiple studies have investigated the response of surface air temperature and precipitation to climate change across the Midwest and United States, but few studies have examined the response of soil moisture and still fewer have assessed soil moisture using a combination of model simulations and regional observations. Soil moisture is a key indicator of the water cycle, reflecting dynamics of precipitation, evaporation, plant transpiration and runoff.

The Dartmouth-led team ran multiple regional climate model experiments to project summertime changes in the water cycle over a representative area of the Midwest. Some of their experiments predict drier soil conditions over the Midwest, while others predict wetter soil conditions, with the response strongly dependent on the choice of global climate model used to provide input to the regional climate model.

To resolve the contradictory predictions, the researchers also assessed an extensive and unique observational dataset of the water budget in Illinois. Their results show no statistically significant trends in soil moisture, precipitation, streamflow, groundwater level or surface air temperature over a recent 26-year period. Model simulations unanimously project increased temperatures in the Midwest, but the observed trend has been insignificant so far in contrast to climate trends across the world, where most places have already warmed significantly.

"Based on our analysis of model simulations and regional observations, we conclude that climate change impacts on the water cycle of the Midwestern United States remain uncertain," says lead author Jonathan Winter, an assistant professor of geography at Dartmouth, whose research explores climate prediction and the impacts of climate variability and change on water resources and agriculture.

"Our findings also suggest that while increases in surface air temperatures have been insignificant so far, adaptation to projected increases in temperature should be given priority as the signal is robust and could have large impacts on crop yields. Our findings highlight the need for expanded observations of soil moisture and improved simulations of soil moisture by climate models."

###

Dartmouth Assistant Professor Jonathan Winter is available to comment at Jonathan.M.Winter@dartmouth.edu.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

Media Contact

John Cramer
john.cramer@dartmouth.edu
603-646-9130

 @dartmouth

http://www.dartmouth.edu 

John Cramer | EurekAlert!

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>