Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate change's future impact uncertain on Midwest water cycle, Dartmouth-led study finds


Will climate change make the U.S. Midwest drier or wetter during the summer growing season? A new Dartmouth-led study finds that the answer remains uncertain.

A Dartmouth College-led study finds that it remains uncertain whether climate change will make the US Midwest drier or wetter during the summer growing season for corn and other crops.

Credit: Andreas Krappweis

The findings are important given the Midwest's agricultural output is critical to the U.S. economy and global food security.

The study appears in the journal Water Resources Research. A PDF is available on request. The study included researchers from Dartmouth College, Columbia University, National University of Singapore and Massachusetts Institute of Technology.

A potential consequence of climate change is significant modification of the water cycle in farming areas, such as the Midwest. Multiple studies have investigated the response of surface air temperature and precipitation to climate change across the Midwest and United States, but few studies have examined the response of soil moisture and still fewer have assessed soil moisture using a combination of model simulations and regional observations. Soil moisture is a key indicator of the water cycle, reflecting dynamics of precipitation, evaporation, plant transpiration and runoff.

The Dartmouth-led team ran multiple regional climate model experiments to project summertime changes in the water cycle over a representative area of the Midwest. Some of their experiments predict drier soil conditions over the Midwest, while others predict wetter soil conditions, with the response strongly dependent on the choice of global climate model used to provide input to the regional climate model.

To resolve the contradictory predictions, the researchers also assessed an extensive and unique observational dataset of the water budget in Illinois. Their results show no statistically significant trends in soil moisture, precipitation, streamflow, groundwater level or surface air temperature over a recent 26-year period. Model simulations unanimously project increased temperatures in the Midwest, but the observed trend has been insignificant so far in contrast to climate trends across the world, where most places have already warmed significantly.

"Based on our analysis of model simulations and regional observations, we conclude that climate change impacts on the water cycle of the Midwestern United States remain uncertain," says lead author Jonathan Winter, an assistant professor of geography at Dartmouth, whose research explores climate prediction and the impacts of climate variability and change on water resources and agriculture.

"Our findings also suggest that while increases in surface air temperatures have been insignificant so far, adaptation to projected increases in temperature should be given priority as the signal is robust and could have large impacts on crop yields. Our findings highlight the need for expanded observations of soil moisture and improved simulations of soil moisture by climate models."


Dartmouth Assistant Professor Jonathan Winter is available to comment at

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit:

Media Contact

John Cramer


John Cramer | EurekAlert!

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>