Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change to Increase Yellowstone Wildfires Dramatically

27.07.2011
Quick Facts

•A study led by UC Merced Professor Anthony Westerling shows an increase in wildfires due to climate change could profoundly alter the Greater Yellowstone Ecosystem.

•The study predicts large fires could become annual by 2050, leading to a point at which forest regeneration may no longer be possible and converting some forest vegetation to non-forest.

•By 2075, the study suggests, the average annual area burned could top the historic season of 1988, in which 1,200 square miles were burned.

An increase in wildfires due to climate change could rapidly and profoundly alter the Greater Yellowstone Ecosystem, according to a new study authored by environmental engineering and geography Professor Anthony Westerling of the University of California, Merced.

The study by Westerling and his colleagues — which will be published online this week in the Proceedings of the National Academy of Sciences — suggests that the expected rising temperatures caused by climate change could increase the frequency of large wildfires in Yellowstone to an unprecedented level.

The projected increase in fires would likely cause a major shift in the Greater Yellowstone Ecosystem, with fewer dense forests and more open woodland, grass and shrub vegetation. The change could happen by 2050, Westerling posits, with forests becoming younger, the mix of tree species changing and some forests failing to regenerate after repeated fires. This would affect the region’s wildlife, hydrology, carbon storage and aesthetics.

“What surprised us about our results was the speed and scale of the projected changes in fire in Greater Yellowstone,” Westerling said. “We expected fire to increase with increased temperatures, but we did not expect it to increase so much or so quickly. We were also surprised by how consistent the changes were across different climate projections.”

For their study, the researchers compiled climate data from 1972 to 1999 and examined it in relation to the occurrence and size of large wildfires in the northern Rocky Mountains over the same time period. Using the resulting statistical patterns, Westerling and his coauthors projected how climate change would affect Greater Yellowstone fires through the year 2099.

“Large, severe fires are normal for this ecosystem. It has burned this way about every 100 to 300 years, for thousands of years,” said coauthor Monica Turner, the Eugene P. Odum Professor of Ecology at the University of Wisconsin, Madison. “But if the current relationship between climate and large fires holds true, a warming climate will drive more frequent large fires in the Greater Yellowstone Ecosystem in the future."

In the researchers’ simulations, years with no large fires — very common in the recent past — become extremely rare by 2050 and are all but eliminated after 2050. The projections show that after 2050, the average annual area burned is about 100,000 hectares, or nearly 400 square miles. By 2075, the average yearly burn exceeds that of the historic season of 1988, when fires claimed more than 1,200 square miles.

Westerling cautioned, though, that the models used in the study will not work once the increase in fires creates a fundamental change in the ecosystem. As the landscape changes, the relationships between climate and fire would change as well.

“The biggest challenge for us is to understand what can happen when the ecosystem is transformed,” Westerling said. “Our projections also depend on the climate models we are using — for example, if projections for winter snow pack or summer rainfall were to increase significantly, that would change our results.”

Westerling and his coauthors said warming alone is likely to lead to a decline in suitable habitat for tree species currently found in greater Yellowstone, and the projected increase in frequency and severity of wildfires could accelerate that process to a tipping point at which the trees may no longer regenerate. This could cause some forested areas to be converted to woodland or non-forest, and similar changes might be expected in other subalpine or boreal forests.

“The climatic conditions projected for the second half of this century are similar to what we see in areas of the west today that have different forest types from Yellowstone’s,” Westerling said. “We don’t know how fast those species will migrate in response to climate change, though, so the immediate response of the ecosystem is hard to predict. Because of its pristine condition, Yellowstone provides an unparalleled natural laboratory to monitor and learn from fire and ecosystem responses to climate change.”

Westerling’s coauthors on the study were:

•Monica Turner, the Eugene P. Odum Professor of Ecology at the University of Wisconsin, Madison, and a member of the National Academy of Sciences;
•Erica Smithwick, an assistant professor of geography and ecology at the Pennsylvania State University;
•Mike Ryan, a research ecologist in the U.S. Forest Service, based at the Rocky Mountain Station; and

•Bill Romme, a professor emeritus at Colorado State University.

UC Merced opened Sept. 5, 2005, as the 10th campus in the University of California system and the first American research university of the 21st century. The campus significantly expands access to the UC system for students throughout the state, with a special mission to increase college-going rates among students in the San Joaquin Valley. It also serves as a major base of advanced research and as a stimulus to economic growth and diversification throughout the region. Situated near Yosemite National Park, the university is expected to grow rapidly, topping out at about 25,000 students within 30 years.

Professor Anthony Westerling | Newswise Science News
Further information:
http://www.ucmerced.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>