Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Could Drive Native Fish Out of Wisconsin Waters

17.08.2011
The cisco, a key forage fish found in Wisconsin’s deepest and coldest bodies of water, could become a climate change casualty and disappear from most of the Wisconsin lakes it now inhabits by the year 2100, according to a new study.

In a report published online in the journal Public Library of Science One, researchers from the University of Wisconsin-Madison and the Wisconsin Department of Natural Resources project a gloomy fate for the fish -- an important food for many of Wisconsin’s iconic game species -- as climate warms and pressure from invasive species grows.

In the case of the cisco, a warming climate poses a much greater risk than do exotic species such as the rainbow smelt, the invasive that most threatens the deep-dwelling cisco by eating its eggs and young, the Wisconsin researchers say.

“By 2100, 30 to 70 percent of cisco populations could be extirpated in Wisconsin due to climate change,” says Sapna Sharma, a researcher at the UW-Madison Center for Limnology and the lead author of the new study, which predicts the decline of the cisco according to a number of possible future climate scenarios. “Cisco are much more at risk due to climate change rather than interactions with exotic species.”

The cisco, sometimes called lake herring, is now found in about 170 inland lakes in Wisconsin. A member of the trout and salmon family, it is also found in the Great Lakes and once formed the basis of an important commercial fishery before overfishing and the invasion of the alewife, rainbow smelt and sea lamprey caused its populations to diminish dramatically.

Sharma described the cisco as a sentinel species: “It’s one of the most vulnerable fish species in Wisconsin because it depends on cold water,” says Sharma, an aquatic ecologist and statistical modeling expert. “Cisco aren’t the most important socioeconomic species out there, but they are a good indicator of water quality.”

From an ecological perspective, when fish species are displaced by changes in water temperature or for other reasons, it opens the door to other species, especially exotic invasives. The ecological niche occupied by the cisco is also favored by the rainbow smelt, a foreign species that has been in the Great Lakes for decades but that is only now making its way into Wisconsin’s inland lakes.

“The range expansion of invasive species with climate change could be a problem,” Sharma explains. “It could change the composition of species we’re familiar with in Wisconsin. It may be that just a few species dominate. The species composition wouldn’t just be different, there could also be less biodiversity.”

In addition to the ecological change that would be prompted by a warmer Wisconsin climate, Sharma notes, the impoverishment of aquatic ecosystems will have potential socio-economic implications, especially in a setting like Wisconsin where recreational fishing is an iconic pastime, not to mention an important industry.

“This could very well impact the fishing experiences we have,” avers the Wisconsin researcher.

In addition to Sharma, co-authors of the new Public Library of Science One report include M. Jake Vander Zanden and John J. Magnuson, also of UW-Madison, and John Lyons of the Wisconsin Department of Natural Resources.

Terry Devitt (608) 262-8282, trdevitt@wisc.edu

Sapna Sharma | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>