Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate Change Could Drive Native Fish Out of Wisconsin Waters

The cisco, a key forage fish found in Wisconsin’s deepest and coldest bodies of water, could become a climate change casualty and disappear from most of the Wisconsin lakes it now inhabits by the year 2100, according to a new study.

In a report published online in the journal Public Library of Science One, researchers from the University of Wisconsin-Madison and the Wisconsin Department of Natural Resources project a gloomy fate for the fish -- an important food for many of Wisconsin’s iconic game species -- as climate warms and pressure from invasive species grows.

In the case of the cisco, a warming climate poses a much greater risk than do exotic species such as the rainbow smelt, the invasive that most threatens the deep-dwelling cisco by eating its eggs and young, the Wisconsin researchers say.

“By 2100, 30 to 70 percent of cisco populations could be extirpated in Wisconsin due to climate change,” says Sapna Sharma, a researcher at the UW-Madison Center for Limnology and the lead author of the new study, which predicts the decline of the cisco according to a number of possible future climate scenarios. “Cisco are much more at risk due to climate change rather than interactions with exotic species.”

The cisco, sometimes called lake herring, is now found in about 170 inland lakes in Wisconsin. A member of the trout and salmon family, it is also found in the Great Lakes and once formed the basis of an important commercial fishery before overfishing and the invasion of the alewife, rainbow smelt and sea lamprey caused its populations to diminish dramatically.

Sharma described the cisco as a sentinel species: “It’s one of the most vulnerable fish species in Wisconsin because it depends on cold water,” says Sharma, an aquatic ecologist and statistical modeling expert. “Cisco aren’t the most important socioeconomic species out there, but they are a good indicator of water quality.”

From an ecological perspective, when fish species are displaced by changes in water temperature or for other reasons, it opens the door to other species, especially exotic invasives. The ecological niche occupied by the cisco is also favored by the rainbow smelt, a foreign species that has been in the Great Lakes for decades but that is only now making its way into Wisconsin’s inland lakes.

“The range expansion of invasive species with climate change could be a problem,” Sharma explains. “It could change the composition of species we’re familiar with in Wisconsin. It may be that just a few species dominate. The species composition wouldn’t just be different, there could also be less biodiversity.”

In addition to the ecological change that would be prompted by a warmer Wisconsin climate, Sharma notes, the impoverishment of aquatic ecosystems will have potential socio-economic implications, especially in a setting like Wisconsin where recreational fishing is an iconic pastime, not to mention an important industry.

“This could very well impact the fishing experiences we have,” avers the Wisconsin researcher.

In addition to Sharma, co-authors of the new Public Library of Science One report include M. Jake Vander Zanden and John J. Magnuson, also of UW-Madison, and John Lyons of the Wisconsin Department of Natural Resources.

Terry Devitt (608) 262-8282,

Sapna Sharma | Newswise Science News
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>