Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change causing massive movement of tree species across the West

03.11.2011
A huge "migration" of trees has begun across much of the West due to global warming, insect attack, diseases and fire, and many tree species are projected to decline or die out in regions where they have been present for centuries, while others move in and replace them.

In an enormous display of survival of the fittest, the forests of the future are taking a new shape.

In a new report, scientists outline the impact that a changing climate will have on which tree species can survive, and where. The study suggests that many species that were once able to survive and thrive are losing their competitive footholds, and opportunistic newcomers will eventually push them out.

In some cases, once-common species such as lodgepole pine will be replaced by other trees, perhaps a range expansion of ponderosa pine or Douglas-fir. Other areas may shift completely out of forest into grass savannah or sagebrush desert. In central California, researchers concluded that more than half of the species now present would not be expected to persist in the climate conditions of the future.

"Some of these changes are already happening, pretty fast and in some huge areas," said Richard Waring, professor emeritus at Oregon State University and lead author of the study. "In some cases the mechanism of change is fire or insect attack, in others it's simply drought.

"We can't predict exactly which tree (species) will die or which one will take its place, but we can see the long-term trends and probabilities," Waring said. "The forests of our future are going to look quite different."

Waring said tree species that are native to a local area or region are there because they can most effectively compete with other species given the specific conditions of temperature, precipitation, drought, cold-tolerance and many other factors that favor one species over another in that location.

As those climatic conditions change, species that have been established for centuries or millennia will lose their competitive edge, Waring said, and slowly but surely decline or disappear.

This survey, done with remote sensing of large areas over a four-year period, compared 15 coniferous tree species that are found widely across much of the West in Canada and the United States. The research explored impacts on 34 different "eco-regions" ranging from the Columbia Plateau to the Sierra Nevada, Snake River Plain and Yukon Highlands.

It projected which tree species would be at highest risk of disturbance in a future that's generally expected to be 5-9 degrees Fahrenheit warmer by 2080, with perhaps somewhat more precipitation in the winter and spring, and less during the summer.

Among the findings:

Some of the greatest shifts in tree species are expected to occur in both the northern and southern extremes of this area, such as British Columbia, Alberta, and California.
Large declines are expected in lodgepole pine and Engelmann spruce, and more temperate species such as Douglas-fir and western hemlock may expand their ranges.
Many wilderness areas are among those at risk of the greatest changes, and will probably be the first to experience major shifts in tree species.
Some of the mild, wetter areas of western Oregon and Washington will face less overall species change than areas of the West with a harsher climate.
More than half of the evergreen species are experiencing a significant decrease in their competitiveness in six eco-regions.
Conditions have become more favorable for outbreaks of diseases and insects.
Warming will encourage growth at higher elevations and latitudes, and increased drought at the other extremes. Fire frequency will continue to increase across the West, and any tree species lacking drought resistance will face special challenges.

"Ecosystems are always changing at the landscape level, but normally the rate of change is too slow for humans to notice," said Steven Running, the University of Montana Regents Professor and a co-author of the study. "Now the rate of change is fast enough we can see it."

Even though the rate of change has increased, these processes will take time, the scientists said. A greater stability of forest composition will not be attained anytime soon, perhaps for centuries.

"There's not a lot we can do to really control these changes," Waring said. "For instance, to keep old trees alive during drought or insect attacks that they are no longer able to deal with, you might have to thin the forest and remove up to half the trees. These are very powerful forces at work."

One of the best approaches to plan for an uncertain future, the researchers said, is to maintain "connective corridors" as much as possible so that trees can naturally migrate to new areas in a changing future and not be stopped by artificial boundaries.

Also collaborating on the research was Nicholas Coops at the University of British Columbia. The work has been supported by NASA, and the study is being published in two professional journals, Ecological Modeling and Remote Sensing of Environment.

Richard Waring | EurekAlert!
Further information:
http://www.oregonstate.edu

Further reports about: Climate change Douglas-fir lodgepole pine tree species

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>