Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate change causing massive movement of tree species across the West

A huge "migration" of trees has begun across much of the West due to global warming, insect attack, diseases and fire, and many tree species are projected to decline or die out in regions where they have been present for centuries, while others move in and replace them.

In an enormous display of survival of the fittest, the forests of the future are taking a new shape.

In a new report, scientists outline the impact that a changing climate will have on which tree species can survive, and where. The study suggests that many species that were once able to survive and thrive are losing their competitive footholds, and opportunistic newcomers will eventually push them out.

In some cases, once-common species such as lodgepole pine will be replaced by other trees, perhaps a range expansion of ponderosa pine or Douglas-fir. Other areas may shift completely out of forest into grass savannah or sagebrush desert. In central California, researchers concluded that more than half of the species now present would not be expected to persist in the climate conditions of the future.

"Some of these changes are already happening, pretty fast and in some huge areas," said Richard Waring, professor emeritus at Oregon State University and lead author of the study. "In some cases the mechanism of change is fire or insect attack, in others it's simply drought.

"We can't predict exactly which tree (species) will die or which one will take its place, but we can see the long-term trends and probabilities," Waring said. "The forests of our future are going to look quite different."

Waring said tree species that are native to a local area or region are there because they can most effectively compete with other species given the specific conditions of temperature, precipitation, drought, cold-tolerance and many other factors that favor one species over another in that location.

As those climatic conditions change, species that have been established for centuries or millennia will lose their competitive edge, Waring said, and slowly but surely decline or disappear.

This survey, done with remote sensing of large areas over a four-year period, compared 15 coniferous tree species that are found widely across much of the West in Canada and the United States. The research explored impacts on 34 different "eco-regions" ranging from the Columbia Plateau to the Sierra Nevada, Snake River Plain and Yukon Highlands.

It projected which tree species would be at highest risk of disturbance in a future that's generally expected to be 5-9 degrees Fahrenheit warmer by 2080, with perhaps somewhat more precipitation in the winter and spring, and less during the summer.

Among the findings:

Some of the greatest shifts in tree species are expected to occur in both the northern and southern extremes of this area, such as British Columbia, Alberta, and California.
Large declines are expected in lodgepole pine and Engelmann spruce, and more temperate species such as Douglas-fir and western hemlock may expand their ranges.
Many wilderness areas are among those at risk of the greatest changes, and will probably be the first to experience major shifts in tree species.
Some of the mild, wetter areas of western Oregon and Washington will face less overall species change than areas of the West with a harsher climate.
More than half of the evergreen species are experiencing a significant decrease in their competitiveness in six eco-regions.
Conditions have become more favorable for outbreaks of diseases and insects.
Warming will encourage growth at higher elevations and latitudes, and increased drought at the other extremes. Fire frequency will continue to increase across the West, and any tree species lacking drought resistance will face special challenges.

"Ecosystems are always changing at the landscape level, but normally the rate of change is too slow for humans to notice," said Steven Running, the University of Montana Regents Professor and a co-author of the study. "Now the rate of change is fast enough we can see it."

Even though the rate of change has increased, these processes will take time, the scientists said. A greater stability of forest composition will not be attained anytime soon, perhaps for centuries.

"There's not a lot we can do to really control these changes," Waring said. "For instance, to keep old trees alive during drought or insect attacks that they are no longer able to deal with, you might have to thin the forest and remove up to half the trees. These are very powerful forces at work."

One of the best approaches to plan for an uncertain future, the researchers said, is to maintain "connective corridors" as much as possible so that trees can naturally migrate to new areas in a changing future and not be stopped by artificial boundaries.

Also collaborating on the research was Nicholas Coops at the University of British Columbia. The work has been supported by NASA, and the study is being published in two professional journals, Ecological Modeling and Remote Sensing of Environment.

Richard Waring | EurekAlert!
Further information:

Further reports about: Climate change Douglas-fir lodgepole pine tree species

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>