Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate 'tipping points' may arrive without warning

10.02.2010
A new University of California, Davis, study by a top ecological forecaster says it is harder than experts thought to predict when sudden shifts in Earth's natural systems will occur -- a worrisome finding for scientists trying to identify the tipping points that could push climate change into an irreparable global disaster.

"Many scientists are looking for the warning signs that herald sudden changes in natural systems, in hopes of forestalling those changes, or improving our preparations for them," said UC Davis theoretical ecologist Alan Hastings. "Our new study found, unfortunately, that regime shifts with potentially large consequences can happen without warning — systems can ‘tip’ precipitously.

"This means that some effects of global climate change on ecosystems can be seen only once the effects are dramatic. By that point returning the system to a desirable state will be difficult, if not impossible."

The current study focuses on models from ecology, but its findings may be applicable to other complex systems, especially ones involving human dynamics such as harvesting of fish stocks or financial markets.

Hastings, a professor in the UC Davis Department of Environmental Science and Policy, is one of the world's top experts in using mathematical models (sets of equations) to understand natural systems. His current studies range from researching the dynamics of salmon and cod populations to modeling plant and animal species' response to global climate change.

In 2006, Hastings received the Robert H. MacArthur Award, the highest honor given by the Ecological Society of America.

Hastings' collaborator and co-author on the new study, Derin Wysham, was previously a postdoctoral scholar at UC Davis and is now a research scientist in the Department of Computational and Systems Biology at the John Innes Center in Norwich, England.

Scientists widely agree that global climate change is already causing major environmental effects, such as changes in the frequency and intensity of precipitation, droughts, heat waves and wildfires; rising sea level; water shortages in arid regions; new and larger pest outbreaks afflicting crops and forests; and expanding ranges for tropical pathogens that cause human illness.

And they fear that worse is in store. As U.S. presidential science adviser John Holdren (not an author of the new UC Davis study) recently told a congressional committee: "Climate scientists worry about 'tipping points' ... thresholds beyond which a small additional increase in average temperature or some associated climate variable results in major changes to the affected system."

Among the tipping points Holdren listed were: the complete disappearance of Arctic sea ice in summer, leading to drastic changes in ocean circulation and climate patterns across the whole Northern Hemisphere; acceleration of ice loss from the Greenland and Antarctic ice sheets, driving rates of sea-level increase to 6 feet or more per century; and ocean acidification from carbon dioxide absorption, causing massive disruption in ocean food webs.

The new UC Davis study, "Regime shifts in ecological systems can occur with no warning," was supported by the Advancing Theory in Biology program at the U.S. National Science Foundation and was published online today by the journal Ecology Letters, in its Early View feature: http://www3.interscience.wiley.com/journal/123276879/abstract.

About UC Davis
For more than 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has 32,000 students, an annual research budget that exceeds $600 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science. It also houses six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.
Media contact(s):
Alan Hastings, Environmental Science and Policy, (530) 752-8116, amhastings@ucdavis.edu

Sylvia Wright, UC Davis News Service, (530) 752-7704, swright@ucdavis.edu

Alan Hastings | EurekAlert!
Further information:
http://www.ucdavis.edu
http://www3.interscience.wiley.com/journal/123276879/abstract

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>