Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can Cleft Palate be Healed Before Birth?

03.12.2009
In a study published in the journal Development, investigators at the USC School of Dentistry describe how to non-surgically reverse the onset of cleft palate in fetal mice - potentially one step in the journey to a better understanding of similar defects in humans.

Yang Chai, the study’s principal investigator and director of the School of Dentistry’s Center for Craniofacial Molecular Biology, said that cleft palate is one of the most common congenital birth defects in humans and that current surgical treatment for the craniofacial abnormality is often complex and invasive, sometimes stretching over a period of years before the treatment is considered complete.

Cleft palate can cause serious complications, including difficulty eating and learning to speak. However, close regulation of important signaling molecules during palate formation may one day allow doctors to reverse a cleft palate before the baby is even born, Chai said.

For example, the protein Shh must remain within a certain level in a developing fetus in order for a proper palate to form. If too little or too much of the protein is expressed, a cleft palate can occur.

Two genes are responsible for the regulation of Shh levels. Signaling from the Msx1 gene encourages Shh production, while Dlx5 discourages Shh, creating a healthy balance. Both genes are critical for the healthy development of the palate, teeth and other skull and facial structures.

The fetal mice were strategically bred to have a defect in the Msx1 gene, resulting in lack of expression of the Shh protein and the formation of cleft palates. However, when the impact of the Dlx5 gene was suppressed, more Shh was successfully expressed and the palate began to regrow.

When the mice were born, their palates were intact. While some of the oral structures had minor differences as compared to the palates in completely healthy mice, the function of the rescued palates were healthy, allowing the newborn mice to feed normally.

With more research into the genetic processes behind cleft palate in humans, the breakthrough could someday make a big difference in how we prevent or treat cleft palate in humans, Chai said.

Beth Dunham | EurekAlert!
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>