Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean 3-way split observed

11.08.2008
Study in the journal Science provides first proof of unlikely phenomenon

In chemistry as in life, threesomes are not known to break up neatly.

And while open-minded thinkers have insisted that clean three-way splits do happen, nobody had actually witnessed one – until now.

A paper in the Aug. 8 issue of Science provides the first hard evidence for the simultaneous break-up of a molecule into three equal parts.

Previous studies of so-called "concerted break-ups" had only suggested their existence, said co-author Anna Krylov, a theoretical chemist at the University of Southern California.

"The experiments by our collaborators (at the University of California, San Diego) demonstrated that this mechanism is present, and our theory explained why and how it happens," she said.

The breakthrough matters for two reasons. Concerted reactions have long been thought to play an important role in organic chemistry, and Krylov's theoretical model offers a framework for better understanding and perhaps manipulating such reactions.

In addition, important phenomena in the atmosphere and in combustion involve three-body reactions. Ozone forms when three molecules come together at exactly the same time – an event no different in theory from a simultaneous split.

Such events are relatively rare: Theory and experiment agree that in most cases a threesome will fall apart in steps, with one bond breaking before the next.

"Why would it happen simultaneously?" Krylov asked rhetorically.

But she and graduate student Vadim Mozhayskiy showed that if the electrons of the sym-triazine molecule are energized in a particular way, the whole flies apart into three identical and equally energetic parts.

Unraveling the mechanism has become possible only through the combined efforts of theoreticians and experimentalists.

Co-author Robert Continetti and his team at UCSD used electrical charges to energize molecules of sym-triazine to their breaking point. By separating the molecules in time and space, the researchers were able to identify the products from individual molecular events.

In some cases, the three parts from a single molecule had exactly the same energy and reached detectors at the same time, indicating that a simultaneous three-way split had occurred.

Even with this discovery, three-body reactions remain largely mysterious, Krylov said.

"The gap in understanding of single-bond and multiple-bond breaking processes is just incredible."

Krylov hopes to promote further work in the field through her iOpenShell Center, a USC-based institute supported by the National Science Foundation and created to foster collaborations between theoretical and experimental chemists.

"The center provides a framework for these interactions," she said.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>