Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cities can significantly boost their GDP by investing in public transport

02.06.2014
  • Study suggests an annual economic opportunity of nearly $800 billion
  • Targeted investment in public transport secures cities' attractiveness and competitiveness
  • Copenhagen is the most cost-efficient city of the 35 evaluated

Worldwide, major cities stand to gain around $800 billion per year of economic opportunity from 2030 by upgrading their public transportation networks. This is according to a study "The Mobility Opportunity" conducted by London-based consulting firm, Credo, and presented today in Singapore. Commissioned by Siemens, the study looks at transportation networks in 35 major cities around the globe and assesses how prepared cities are to meet future challenges, including population growth and higher competition. The results: If all 35 cities studied would implement relative "best in class" standards, they stand to gain an economic benefit of roughly $238 billion annually from 2030. Extrapolating to all comparably-sized cities globally with a population of around 750,000 and greater, this suggests an economic opportunity of roughly $800 billion annually. This corresponds to about one per cent of global GDP. Today the potential benefit would be about $360 billion per year.

Transport is considered one of the major factors of a city's competitiveness. However, lack of financial resources often constrains cities' ability to invest in their transport networks. This study is unique in seeking to put an economic value on the cost of inefficient transport, thus helping cities make the case for investment. Some of the factors considered were journey times, crowding and network density, all of which impact a city's productivity. In order to have a reasonable comparison, the study groups cities into three categories to account for different levels of wealth and development. According to Credo, the most cost-efficient cities are:

  • Copenhagen, Denmark (Category "Well-established cities")
  • Singapore (Category "High-density compact centers")
  • Santiago, Chile (Category "Emerging cities")

Then, Credo compared cities to the leading city in their category. The comparison enabled them to quantify the economic benefits that investments in transport would bring, such as higher productivity and new economic activity. Finally, Credo has developed some key pointers on how cities can realize the potential economic uplift. Case studies show how potential investments can pay off.

"All cities can learn from the leading cities in their category in order to close the gap of their transport networks' efficiency, reduce costs and increase productivity. Because the more efficient a city's transport network is, the more attractive the city is to business and people", commented Chris Molloy, Partner at Credo.

"The best transportation systems are the ones that move people quickly, easily, and comfortably to their destination. The leading cities are already achieving this with efficient transport networks that feature modern infrastructure, easy connections across various modes of transportation, and, above all, a clear strategy of how to meet future needs," said Roland Busch, CEO of the Siemens Sector Infrastructure & Cities and member of the Managing Board of Siemens AG.

Cities are the engines for future growth. They generate 80 percent of global economic output. However, in a globalized economy, with businesses and workforces increasingly able to relocate internationally, they must compete to offer the most attractive environment for economic activity. The study "The Mobility Opportunity" is geared toward city decision-makers around the world so that they may use its recommendations to achieve the greatest economic benefit.

For further information and pictures from the event available at www.siemens.com/press/mobility-opportunity

The Siemens Infrastructure & Cities Sector (Munich, Germany), with approximately 90,000 employees, focuses on sustainable and intelligent infrastructure technologies. Its offering includes products, systems and solutions for intelligent traffic management, rail-bound transportation, smart grids, power distribution, energy efficient buildings, and safety and security. The Sector comprises the divisions Building Technologies, Low and Medium Voltage, Mobility and Logistics, Rail Systems and Smart Grid. For more information visit http://www.siemens.com/infrastructure-cities

Reference Number: IC201406009e

Contact

Mr. Stefan Wagner
Infrastructure & Cities Sector

Siemens AG

Wittelsbacherplatz 2

80333  Munich

Germany

Tel: +49 (89) 636-632041

Mr. Piers Barclay

Credo

Tel: +44 (203) 206-8800

Stefan Wagner | Siemens Infrastructure & Cities

Further reports about: Category Cities GDP Infrastructure Mobility Sector Singapore activity attractive investments networks productivity

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>