Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circadian rhythms have profound influence on metabolic output, UCI study reveals

20.03.2012
Findings lead to creation of world’s first liver metabolite data set
By analyzing the hundreds of metabolic products present in the liver, researchers with the UC Irvine Center for Epigenetics & Metabolism have discovered that circadian rhythms — our own body clock — greatly control the production of such key building blocks as amino acids, carbohydrates and lipids.

They identified more than 600 liver-originated metabolites, which are the chemical substances created by metabolism that sustain and promote cell health and growth. Approximately 60 percent of these metabolites were found to be dependent on the endogenous circadian clock — many more than expected, as only about 15 percent of the body’s genes are regulated by it.

Circadian rhythms over 24 hours govern fundamental biological and physiological processes in almost all organisms. They anticipate environmental changes and adapt certain bodily functions to the appropriate time of day. Disruption of these cycles can seriously affect human health.

Center for Epigenetics & Metabolism director Paolo Sassone-Corsi, lead author on the study and one of the world’s preeminent researchers on circadian rhythms, said the liver metabolites reveal how the body clock — through the main circadian gene, CLOCK — orchestrates the interplay between metabolites and signaling proteins in much the same way a conductor leads a symphony.

“Metabolites and signaling proteins — like the horns and strings in an orchestra — need to be perfectly coordinated, and we’ve found that CLOCK provides that direction,” he said.

Since external cues such as day-night lighting patterns and nutrition influence the circadian machinery, metabolites and their relationship to signaling proteins in cells seem to be acutely tied to circadian disruptions. This may help explain, Sassone-Corsi added, some of the primary physiological factors underlying obesity, high cholesterol and metabolic-based diseases like diabetes.

“This interplay has far-reaching implications for human illness and aging, and it is likely vital for proper metabolism,” he said. Study results appear this week in the early online edition of the Proceedings of the National Academy of Sciences.

“By identifying the relationship between metabolites and the body clock, we have taken a first step toward a better understanding of how nutrients interact with our metabolism, giving researchers a new opportunity to spot the optimal times for us to get the fullest benefits from the foods we eat and the medications we take,” added Kristin Eckel-Mahan, a UCI postdoctoral researcher in biological chemistry and study co-author.

Working with Metabolon Inc., Sassone-Corsi and Eckel-Mahan created the first liver metabolome – the full set of metabolites. With this information, they partnered with Pierre Baldi, director of UCI’s Institute for Genomics & Bioinformatics, and his graduate student Vishal Patel to analyze the data and build CircadiOmics, a Web-based data system that provides detailed profiles of the metabolites and related genes in the liver and the underlying networks through which they interact.

“Within CircadiOmics, we were able to integrate this circadian metabolite data with multiple other data sources to generate the first comprehensive map of the liver metabolome and its circadian oscillations and develop regulatory hypotheses that have been confirmed in the laboratory,” said Baldi, Chancellor’s Professor of computer science. “CircadiOmics is being expanded with metabolic data about other tissues and conditions and will be invaluable to further our understanding of the interplay between metabolism and circadian rhythms in healthy and diseased states.”

Robert Mohney and Katie Vignola of Metabolon, in Durham, N.C., contributed to the study, which received National Institutes of Health and National Science Foundation support.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s second-largest employer, UCI contributes an annual economic impact of $4 billion. For more UCI news, visit www.today.uci.edu.
News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Daniel A. Anderson / University Communications
Paolo Sassone-Corsi is one of the world's leading experts on circadian rhythms.
Media Contact
Tom Vasich
University Communications
949-824-6455
tmvasich@uci.edu

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>