Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circadian rhythms have profound influence on metabolic output, UCI study reveals

20.03.2012
Findings lead to creation of world’s first liver metabolite data set
By analyzing the hundreds of metabolic products present in the liver, researchers with the UC Irvine Center for Epigenetics & Metabolism have discovered that circadian rhythms — our own body clock — greatly control the production of such key building blocks as amino acids, carbohydrates and lipids.

They identified more than 600 liver-originated metabolites, which are the chemical substances created by metabolism that sustain and promote cell health and growth. Approximately 60 percent of these metabolites were found to be dependent on the endogenous circadian clock — many more than expected, as only about 15 percent of the body’s genes are regulated by it.

Circadian rhythms over 24 hours govern fundamental biological and physiological processes in almost all organisms. They anticipate environmental changes and adapt certain bodily functions to the appropriate time of day. Disruption of these cycles can seriously affect human health.

Center for Epigenetics & Metabolism director Paolo Sassone-Corsi, lead author on the study and one of the world’s preeminent researchers on circadian rhythms, said the liver metabolites reveal how the body clock — through the main circadian gene, CLOCK — orchestrates the interplay between metabolites and signaling proteins in much the same way a conductor leads a symphony.

“Metabolites and signaling proteins — like the horns and strings in an orchestra — need to be perfectly coordinated, and we’ve found that CLOCK provides that direction,” he said.

Since external cues such as day-night lighting patterns and nutrition influence the circadian machinery, metabolites and their relationship to signaling proteins in cells seem to be acutely tied to circadian disruptions. This may help explain, Sassone-Corsi added, some of the primary physiological factors underlying obesity, high cholesterol and metabolic-based diseases like diabetes.

“This interplay has far-reaching implications for human illness and aging, and it is likely vital for proper metabolism,” he said. Study results appear this week in the early online edition of the Proceedings of the National Academy of Sciences.

“By identifying the relationship between metabolites and the body clock, we have taken a first step toward a better understanding of how nutrients interact with our metabolism, giving researchers a new opportunity to spot the optimal times for us to get the fullest benefits from the foods we eat and the medications we take,” added Kristin Eckel-Mahan, a UCI postdoctoral researcher in biological chemistry and study co-author.

Working with Metabolon Inc., Sassone-Corsi and Eckel-Mahan created the first liver metabolome – the full set of metabolites. With this information, they partnered with Pierre Baldi, director of UCI’s Institute for Genomics & Bioinformatics, and his graduate student Vishal Patel to analyze the data and build CircadiOmics, a Web-based data system that provides detailed profiles of the metabolites and related genes in the liver and the underlying networks through which they interact.

“Within CircadiOmics, we were able to integrate this circadian metabolite data with multiple other data sources to generate the first comprehensive map of the liver metabolome and its circadian oscillations and develop regulatory hypotheses that have been confirmed in the laboratory,” said Baldi, Chancellor’s Professor of computer science. “CircadiOmics is being expanded with metabolic data about other tissues and conditions and will be invaluable to further our understanding of the interplay between metabolism and circadian rhythms in healthy and diseased states.”

Robert Mohney and Katie Vignola of Metabolon, in Durham, N.C., contributed to the study, which received National Institutes of Health and National Science Foundation support.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s second-largest employer, UCI contributes an annual economic impact of $4 billion. For more UCI news, visit www.today.uci.edu.
News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Daniel A. Anderson / University Communications
Paolo Sassone-Corsi is one of the world's leading experts on circadian rhythms.
Media Contact
Tom Vasich
University Communications
949-824-6455
tmvasich@uci.edu

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>