Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cigarettes Harbor Many Bacteria Harmful to Human Health

Cigarettes are "widely contaminated" with bacteria, including some known to cause disease in people, concludes a new international study conducted by a University of Maryland environmental health researcher and microbial ecologists at the Ecole Centrale de Lyon in France.

The research team describes the study as the first to show that "cigarettes themselves could be the direct source of exposure to a wide array of potentially pathogenic microbes among smokers and other people exposed to secondhand smoke." Still, the researchers caution that the public health implications are unclear and urge further research.

"We were quite surprised to identify such a wide variety of human bacterial pathogens in these products," says lead researcher Amy R. Sapkota, an assistant professor in the University of Maryland's School of Public Health.

"The commercially-available cigarettes that we tested were chock full of bacteria, as we had hypothesized, but we didn't think we'd find so many that are infectious in humans," explains Sapkota, who holds a joint appointment with the University's Maryland Institute for Applied Environmental Health and the department of epidemiology and biostatistics.

"If these organisms can survive the smoking process - and we believe they can - then they could possibly go on to contribute to both infectious and chronic illnesses in both smokers and individuals who are exposed to environmental tobacco smoke," Sapkota adds. "So, it's critical that we learn more about the bacterial content of cigarettes, which are used by more than a billion people worldwide."

The study will appear in an upcoming edition of the journal Environmental Health Perspectives and the pre-copyedited manuscript has been posted online.


The researchers describe the study as the first snapshot of the total population of bacteria in cigarettes. Previous researchers have taken small samples of cigarette tobacco and placed them in cultures to see whether bacteria would grow. But Sapkota's team took a more holistic approach using DNA microarray analysis to estimate the so-called bacterial metagenome, the totality of bacterial genetic material present in the tested cigarettes.

Among the study's findings and conclusions:

* Commercially available cigarettes show a broad array of bacterial diversity, ranging from soil microorganisms to potential human pathogens;
* The is the first study to provide evidence that the numbers of microorganisms in a cigarette may be as "vast as the number of chemical constituents;"
* Hundreds of bacterial species were present in each cigarette, and additional testing is likely to increase that number significantly;
* No significant variability in bacterial diversity was observed across the four different cigarette brands examined: Camel; Kool Filter Kings; Lucky Strike Original Red; and Marlboro Red;

* Bacteria of medical significance to humans were identified in all of the tested cigarettes and included Acinetobacter (associated with lung and blood infections); Bacillus (some varieties associated with food borne illnesses and anthrax); Burkholderia (some forms responsible for respiratory infections); Clostridium(associated with foodborne illnesses and lung infections); Klebsiella (associated with a variety of lung, blood and other infections); and Pseudomonas aeruginosa (an organism that causes 10 percent of all hospital-acquired infections in the United States).

"Now that we've shown that a pack of cigarettes is loaded with bacteria, we will conduct follow-up research to determine the possible roles of these organisms in tobacco-related diseases." Sapkota says.

For example, do cigarette-borne bacteria survive the burning process and go on to colonize smokers' respiratory systems? Existing research suggests that some hardy bacteria can be transmitted this way, the researchers say. This might account for the fact that the respiratory tracts of smokers are characterized by higher levels of bacterial pathogens. But it's also possible that smoking weakens natural immunity and the bacteria come from the general environment rather than from cigarettes. Further research will be needed to determine the possible health impacts of cigarette-borne bacteria.


Sapkota is the lead and corresponding author. She conducted the research with Sibel Berger under the guidance of Timothy M. Vogel in 2007 at the Environmental Microbial Genomics Group, Laboratoire Ampère, UMR CNRS 5005, Ecole Centrale de Lyon in Lyon, France.

Amy R.Sapkota | Newswise Science News
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>