Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


If your first cigarette gave you a buzz and you now smoke, a gene may be to blame

Link between initial smoking pleasure, lifetime smoking habits and variation in nicotine receptor gene found by U-M-led team

Anyone who has ever tried smoking probably remembers that first cigarette vividly. For some, it brought a wave of nausea or a nasty coughing fit. For others, those first puffs also came with a rush of pleasure or "buzz."

Now, a new study links those first experiences with smoking, and the likelihood that a person is currently a smoker, to a particular genetic variation. The finding may help explain the path that leads from that first cigarette to lifelong smoking.

The new finding also adds to growing suspicion surrounding the role of a particular nicotine-receptor gene in smoking-related behaviors and in lung cancer. Other researchers have already linked variations in the same genetic region to smokers' level of dependence on nicotine, to the number of cigarettes smoked per day and to a far higher risk of lung cancer — the ultimate outcome of a lifetime of smoking.

In a paper published online today in the journal Addiction, a multi-university collaborative team of researchers specializing in statistical genetics, gene analysis, and trait analysis reports an association between a variant in the CHRNA5 nicotine receptor gene, initial smoking experiences, and current smoking patterns.

The genetic and smoking data come from 435 volunteers. Those who never smoked had tried at least one cigarette but no more than 100 cigarettes in their lives, and never formed a smoking habit. The regular smokers had smoked at least five cigarettes a day for at least the past five years.

The regular smokers in the study were far more likely than the never-smokers to have the less common rs16969968 form of the CHRNA5 gene, in which just one base-pair in the gene sequence was different from the more common form. This kind of genetic variation is called a single nucleotide polymorphism or SNP.

Smokers were also eight times as likely to report that their first cigarettes gave them a pleasurable buzz.

"It appears that for people who have a certain genetic makeup, the initial physical reaction to smoking can play a significant role in determining what happens next," says senior author and project leader, Ovide Pomerleau, a professor of psychiatry at the University of Michigan Medical School and founder of the U-M Nicotine Research Laboratory.

"If cigarette smoking is sustained, nicotine addiction can occur in a few days to a few months," he adds. "The finding of a genetic association with pleasurable early smoking experiences may help explain how people get addicted — and, of course, once addicted, many will keep smoking for the rest of their lives."

The researchers point out that the genetic variant explains only a portion of human smoking behavior, and that a more complete explanation of why people smoke and why they can't quit will require much more information about how genes interact with social influences and other environmental factors.

Pomerleau predicts that the ability to link behavioral patterns in smoking to individual genotypes will need extensive information concerning behavior, genes, and the environmental context — as well as bioinformatic tools to bring it all together. "Understanding the genetics of complex disorders such as nicotine addiction will require much more research on key traits," he says.

The team notes that the CHRNA5 relationships appear to be strong and that practical applications from this research include new genetic tests for smoking risk and the development of medications that target smoking-risk genes.

Pomerleau states that the new paper builds on findings reported last year by fellow author Laura Bierut, in which a whole-genome study found that the same single nucleotide polymorphism, rs16969968, of the CHRNA5 gene was associated with smokers' level of nicotine dependence.

He also notes that, this year, three papers published independently of one another demonstrated that variations in the same gene, and related genes, greatly increase the risk of lung cancer.

Taking into account its links to increased liking of initial smoking, stronger likelihood of getting addicted to nicotine, and greater probability of developing lung cancer, this genetic variant may well constitute a "triple whammy" for smoking-related disease, he says.

A mechanism for explaining increased disease risk, proposed by one of the cancer genetics researchers, is the possibility that certain chemicals, for instance N-nitrosonornicotine in tobacco smoke, act on nicotine receptors in the lung to produce cancer-causing changes – a process known as tumorigenesis.

The new findings linking first smoking experiences, smoking habits, and genetic variation build on previous research by Ovide Pomerleau and Cynthia Pomerleau, Ph.D., at U-M. In studies conducted over a 10-year span, they documented a link between nicotine-dependent smoking and positive first smoking experiences.

Kara Gavin | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>