Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

If your first cigarette gave you a buzz and you now smoke, a gene may be to blame

12.08.2008
Link between initial smoking pleasure, lifetime smoking habits and variation in nicotine receptor gene found by U-M-led team

Anyone who has ever tried smoking probably remembers that first cigarette vividly. For some, it brought a wave of nausea or a nasty coughing fit. For others, those first puffs also came with a rush of pleasure or "buzz."

Now, a new study links those first experiences with smoking, and the likelihood that a person is currently a smoker, to a particular genetic variation. The finding may help explain the path that leads from that first cigarette to lifelong smoking.

The new finding also adds to growing suspicion surrounding the role of a particular nicotine-receptor gene in smoking-related behaviors and in lung cancer. Other researchers have already linked variations in the same genetic region to smokers' level of dependence on nicotine, to the number of cigarettes smoked per day and to a far higher risk of lung cancer — the ultimate outcome of a lifetime of smoking.

In a paper published online today in the journal Addiction, a multi-university collaborative team of researchers specializing in statistical genetics, gene analysis, and trait analysis reports an association between a variant in the CHRNA5 nicotine receptor gene, initial smoking experiences, and current smoking patterns.

The genetic and smoking data come from 435 volunteers. Those who never smoked had tried at least one cigarette but no more than 100 cigarettes in their lives, and never formed a smoking habit. The regular smokers had smoked at least five cigarettes a day for at least the past five years.

The regular smokers in the study were far more likely than the never-smokers to have the less common rs16969968 form of the CHRNA5 gene, in which just one base-pair in the gene sequence was different from the more common form. This kind of genetic variation is called a single nucleotide polymorphism or SNP.

Smokers were also eight times as likely to report that their first cigarettes gave them a pleasurable buzz.

"It appears that for people who have a certain genetic makeup, the initial physical reaction to smoking can play a significant role in determining what happens next," says senior author and project leader, Ovide Pomerleau, a professor of psychiatry at the University of Michigan Medical School and founder of the U-M Nicotine Research Laboratory.

"If cigarette smoking is sustained, nicotine addiction can occur in a few days to a few months," he adds. "The finding of a genetic association with pleasurable early smoking experiences may help explain how people get addicted — and, of course, once addicted, many will keep smoking for the rest of their lives."

The researchers point out that the genetic variant explains only a portion of human smoking behavior, and that a more complete explanation of why people smoke and why they can't quit will require much more information about how genes interact with social influences and other environmental factors.

Pomerleau predicts that the ability to link behavioral patterns in smoking to individual genotypes will need extensive information concerning behavior, genes, and the environmental context — as well as bioinformatic tools to bring it all together. "Understanding the genetics of complex disorders such as nicotine addiction will require much more research on key traits," he says.

The team notes that the CHRNA5 relationships appear to be strong and that practical applications from this research include new genetic tests for smoking risk and the development of medications that target smoking-risk genes.

Pomerleau states that the new paper builds on findings reported last year by fellow author Laura Bierut, in which a whole-genome study found that the same single nucleotide polymorphism, rs16969968, of the CHRNA5 gene was associated with smokers' level of nicotine dependence.

He also notes that, this year, three papers published independently of one another demonstrated that variations in the same gene, and related genes, greatly increase the risk of lung cancer.

Taking into account its links to increased liking of initial smoking, stronger likelihood of getting addicted to nicotine, and greater probability of developing lung cancer, this genetic variant may well constitute a "triple whammy" for smoking-related disease, he says.

A mechanism for explaining increased disease risk, proposed by one of the cancer genetics researchers, is the possibility that certain chemicals, for instance N-nitrosonornicotine in tobacco smoke, act on nicotine receptors in the lung to produce cancer-causing changes – a process known as tumorigenesis.

The new findings linking first smoking experiences, smoking habits, and genetic variation build on previous research by Ovide Pomerleau and Cynthia Pomerleau, Ph.D., at U-M. In studies conducted over a 10-year span, they documented a link between nicotine-dependent smoking and positive first smoking experiences.

Kara Gavin | EurekAlert!
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>