Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chokeberry extract found to regulate weight gain, blood glucose, and inflammation in rats

26.04.2010
Chokeberry bushes have for centuries been residents of eastern deciduous forests where their bright red and dark purple fruits continue to be favorite snacks of local bird species.

Native Americans have also traditionally eaten dried chokeberries and prepared teas from parts of the plant, and several domesticated varieties now grace contemporary lawns and gardens from coast to coast.

However, the chokeberry (Aronia) is enjoying a new claim-to-fame as a potentially powerful antioxidant, and can now be found for sale in the dietary supplement and "health food" aisles of your local pharmacies and grocery stores.

What makes the humble chokeberry so healthful? Scientists think the answer lies in their unusually high levels of substances called anthocyanins (from the Greek anthos + kyanos meaning dark blue). There are many different anthocyanins in these colorful berries, but they all function as antioxidants – originally protecting the chokeberry seed from sunshine-induced oxidative stress. And when we eat them, they also appear to protect our bodies from a variety of damaging situations, including exposure to pollution and metabolically-derived free radicals. Indeed, a growing body of scientific literature has shown promising effects of chokeberry consumption on diseases ranging from cancer to obesity. These health-promoting effects may be due to the potent anti-inflammatory properties of anthocyanins, as uncontrolled inflammation is now universally recognized as a common thread in many of our most prevalent and deadly diseases. In addition, certain anthocyanins – including those found in chokeberry – have also been shown to improve blood sugar and the function of insulin.

To better understand how chokeberries influence health, Drs. Bolin Qin and Richard Anderson from the US Department of Agriculture in Beltsville, MD studied what happens when prediabetic rats are fed chokeberry extracts for an extended period of time. The results of their research will be presented on April 25 at the Experimental Biology 2010 meeting in Anaheim, CA. This presentation is part of the scientific program of the American Society for Nutrition, home of the world's leading nutrition researchers.

The researchers first made 18 male rats "prediabetic" or insulin insensitive by feeding them a fructose-rich diet for 6 weeks. Then they randomized the animals to continue drinking either pure water or water spiked with low or high levels of chokeberry extract (CellBerry®, Integrity Nutraceuticals International). After drinking this water for 6 weeks, the groups were compared in terms of body weight, body fat, blood glucose regulation, and molecular markers for inflammation.

Qin and Anderson found that at the end of the study the rats consuming the chokeberry-spiked water weighed less than the controls; both levels of chokeberry had the same effect in this regard. Similar beneficial effects of chokeberry consumption were found for body fat (specifically, that of the lower abdominal region). They also discovered that animals that had been drinking chokeberry extract had lower blood glucose and reduced levels of plasma triglycerides, cholesterol, and low-density lipoprotein (LDL) cholesterol when compared to the control animals. These alterations would theoretically lead to lower risk for diabetes and cardiovascular disease in humans. And to add even more evidence for a healthful impact of this super-berry, the researchers documented numerous alterations in expression of genes that would likely lead to reduced chronic inflammation and perhaps even lower cancer risk. For instance, drinking chokeberry extract lowered expression of the gene coding for interleukin-6 (IL-6), a protein that normally triggers inflammation following trauma or infection. Chronic overproduction of IL-6 has been documented in many diseases such as diabetes, arthritis, and atherosclerosis and is thought to be a partial cause of these conditions.

Of course, human studies will be needed before scientists can declare whether we derive the same health benefits from the chokeberry, but Qin and Anderson believe that their study "provides evidence that the chokeberry extract inhibits weight gain in insulin-resistant animals and that it modulates multiple genes associated with adipose tissue growth, blood glucose regulation, and inflammatory pathways." A final word to the wise: raw chokeberries are exceptionally bitter, so don't be tempted to harvest the shrubs in your backyard. Instead, look for this unassuming berry in fruit juice blends, jellies, and sweetened syrups.

Drs. Qin and Anderson are federal researchers in the Diet, Genomics, and Immunology Laboratory at the Beltsville Human Nutrition Research Center, a component of the US Department of Agriculture. This study was supported, in part, by Integrity Nutraceuticals International (South Spring Hill, TN).

Suzanne Price | EurekAlert!
Further information:
http://www.faseb.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>