Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chokeberry extract found to regulate weight gain, blood glucose, and inflammation in rats

26.04.2010
Chokeberry bushes have for centuries been residents of eastern deciduous forests where their bright red and dark purple fruits continue to be favorite snacks of local bird species.

Native Americans have also traditionally eaten dried chokeberries and prepared teas from parts of the plant, and several domesticated varieties now grace contemporary lawns and gardens from coast to coast.

However, the chokeberry (Aronia) is enjoying a new claim-to-fame as a potentially powerful antioxidant, and can now be found for sale in the dietary supplement and "health food" aisles of your local pharmacies and grocery stores.

What makes the humble chokeberry so healthful? Scientists think the answer lies in their unusually high levels of substances called anthocyanins (from the Greek anthos + kyanos meaning dark blue). There are many different anthocyanins in these colorful berries, but they all function as antioxidants – originally protecting the chokeberry seed from sunshine-induced oxidative stress. And when we eat them, they also appear to protect our bodies from a variety of damaging situations, including exposure to pollution and metabolically-derived free radicals. Indeed, a growing body of scientific literature has shown promising effects of chokeberry consumption on diseases ranging from cancer to obesity. These health-promoting effects may be due to the potent anti-inflammatory properties of anthocyanins, as uncontrolled inflammation is now universally recognized as a common thread in many of our most prevalent and deadly diseases. In addition, certain anthocyanins – including those found in chokeberry – have also been shown to improve blood sugar and the function of insulin.

To better understand how chokeberries influence health, Drs. Bolin Qin and Richard Anderson from the US Department of Agriculture in Beltsville, MD studied what happens when prediabetic rats are fed chokeberry extracts for an extended period of time. The results of their research will be presented on April 25 at the Experimental Biology 2010 meeting in Anaheim, CA. This presentation is part of the scientific program of the American Society for Nutrition, home of the world's leading nutrition researchers.

The researchers first made 18 male rats "prediabetic" or insulin insensitive by feeding them a fructose-rich diet for 6 weeks. Then they randomized the animals to continue drinking either pure water or water spiked with low or high levels of chokeberry extract (CellBerry®, Integrity Nutraceuticals International). After drinking this water for 6 weeks, the groups were compared in terms of body weight, body fat, blood glucose regulation, and molecular markers for inflammation.

Qin and Anderson found that at the end of the study the rats consuming the chokeberry-spiked water weighed less than the controls; both levels of chokeberry had the same effect in this regard. Similar beneficial effects of chokeberry consumption were found for body fat (specifically, that of the lower abdominal region). They also discovered that animals that had been drinking chokeberry extract had lower blood glucose and reduced levels of plasma triglycerides, cholesterol, and low-density lipoprotein (LDL) cholesterol when compared to the control animals. These alterations would theoretically lead to lower risk for diabetes and cardiovascular disease in humans. And to add even more evidence for a healthful impact of this super-berry, the researchers documented numerous alterations in expression of genes that would likely lead to reduced chronic inflammation and perhaps even lower cancer risk. For instance, drinking chokeberry extract lowered expression of the gene coding for interleukin-6 (IL-6), a protein that normally triggers inflammation following trauma or infection. Chronic overproduction of IL-6 has been documented in many diseases such as diabetes, arthritis, and atherosclerosis and is thought to be a partial cause of these conditions.

Of course, human studies will be needed before scientists can declare whether we derive the same health benefits from the chokeberry, but Qin and Anderson believe that their study "provides evidence that the chokeberry extract inhibits weight gain in insulin-resistant animals and that it modulates multiple genes associated with adipose tissue growth, blood glucose regulation, and inflammatory pathways." A final word to the wise: raw chokeberries are exceptionally bitter, so don't be tempted to harvest the shrubs in your backyard. Instead, look for this unassuming berry in fruit juice blends, jellies, and sweetened syrups.

Drs. Qin and Anderson are federal researchers in the Diet, Genomics, and Immunology Laboratory at the Beltsville Human Nutrition Research Center, a component of the US Department of Agriculture. This study was supported, in part, by Integrity Nutraceuticals International (South Spring Hill, TN).

Suzanne Price | EurekAlert!
Further information:
http://www.faseb.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>