Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chip checks for oral cancer

06.04.2010
Rice's nano-bio-chip effective in pilot study to detect premalignancies

The gentle touch of a lesion on the tongue or cheek with a brush can help detect oral cancer with success rates comparable to more invasive techniques, according to preliminary studies by researchers at Rice University, the University of Texas Health Science Centers at Houston and San Antonio and the University of Texas M.D. Anderson Cancer Center.

The test that uses Rice's diagnostic nano-bio-chip was found to be 97 percent "sensitive" and 93 percent specific in detecting which patients had malignant or premalignant lesions, results that compared well with traditional tests.

The study appeared online in the journal Cancer Prevention Research.

"One of the key discoveries in this paper is to show that the miniaturized, noninvasive approach produces about the same result as the pathologists do," said John McDevitt, the Brown-Wiess Professor of Chemistry and Bioengineering at Rice. His lab developed the novel nano-bio-chip technology at the university's BioScience Research Collaborative.

Oral cancer afflicts more than 300,000 people a year, including 35,000 in the United States alone. The five-year survival rate is 60 percent, but if cancer is detected early, that rate rises to 90 percent.

McDevitt and his team are working to create an inexpensive chip that can differentiate premalignancies from the 95 percent of lesions that will not become cancerous.

The minimally invasive technique would deliver results in 15 minutes instead of several days, as lab-based diagnostics do now; and instead of an invasive, painful biopsy, this new procedure requires just a light brush of the lesion on the cheek or tongue with an instrument that looks like a toothbrush.

"This area of diagnostics and testing has been terribly challenging for the scientific and clinical community," said McDevitt, who came to Rice from the University of Texas at Austin in 2009. "Part of the problem is that there are no good tools currently available that work in a reliable way."

He said patients with suspicious lesions, usually discovered by dentists or oral surgeons, end up getting scalpel or punch biopsies as often as every six months. "People trained in this area don't have any trouble finding lesions," McDevitt said. "The issue is the next step -- taking a chunk of someone's cheek. The heart of this paper is developing a more humane and less painful way to do that diagnosis, and our technique has shown remarkable success in early trials."

The way forward is with nano-bio-chips -- small, semiconductor-based devices that combine the ability to capture, stain and analyze biomarkers for a variety of health woes that also include cardiac disease, HIV and trauma injuries. Researchers hope the eventual deployment of nano-bio-chips will dramatically cut the cost of medical diagnostics and contribute significantly to the task of bringing quality health care to the world.

The new study compared results of traditional diagnostic tests with those obtained with nano-bio-chips on a small sample of 52 participants, all of whom had visible oral lesions, leukoplakia or erythroplakia and had been referred to specialists for surgical biopsies or removal of the lesions. Of those patients, 11 were diagnosed as healthy.

The chips should also be able to see when an abnormality turns precancerous. "You want to catch it early on, as it's transforming from pre-cancer to the earliest stages of cancer, and get it in stage one. Then the five-year survival rate is very high," he said. "Currently, most of the time, it's captured in stage three, when the survivability is very low."

The device is on the verge of entering a more extensive trial that will involve 500 patients in Houston, San Antonio and England. That could lead to an application for FDA approval in two to four years.

Eventually, McDevitt said, dentists may be the first line of defense against oral cancers, with the ability to catch early signs of the disease right there in the chair.

McDevitt's co-authors include Rice senior research scientist Pierre Floriano, Rice postdoctoral associate Shannon Weigum and Spencer Redding, a professor and chair of the Department of Dental Diagnostic Science at the University of Texas Health Science Center at San Antonio (UTHSC).

Also contributing were Chih-Ko Yeh, Stephen Westbrook and Alan Lin of the Department of Dental Diagnostic Science, H. Stan McGuff of the Department of Pathology and Frank Miller, Fred Villarreal and Stephanie Rowan of the Department of Otolaryngology, Head and Neck Surgery, all at the UTHSC at San Antonio; Nadarajah Vigneswaran of the Department of Diagnostic Science, UTHSC at Houston; and Michelle Williams of the Department of Pathology at M.D. Anderson Cancer Center.

The researchers received a Grand Opportunity Grant from the National Institute for Dental and Craniofacial Research Division of the National Institutes of Health for the work.

Read the abstract at http://cancerpreventionresearch.aacrjournals.org/content/early/2010/03/20/1940-6207.CAPR-09-0139.abstract.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>