Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

China’s growing CO2 emissions due to investments in construction, not just exports

05.10.2011
Constructing buildings, power-plants, roads is what drives the substantial increase in China’s CO2 emission growth, a new study finds.

Fast growing capital investments in infrastructure projects have led to the expansion of the construction industry and its energy and CO2 intensive supply chain including steel and cement production. As a result of this transformation of China’s economy, more and more CO2 is released per unit of gross domestic product recently – a reversion of a long-term trend.

Previously China’s greenhouse gas emission growth was driven by rising consumption and exports. Today this emission growth is offset by emission savings from efficiency increases. This now is thwarted by the building of infrastructure – which is even more important as it dictates tomorrow’s emissions, the international team of researchers concludes.

“Up to 2002 there has been a race between consumption growth and efficiency gains,” says Jan C. Minx from the Potsdam Institute for Climate Impact Research (PIK) and the Technical University of Berlin, Germany, lead author of the study. “However, the recent rise in emissions is completely due to the massive structural change of China’s economy. Emissions grow faster and faster, because CO2 intensive sectors linked to the building of infrastructure have become more and more dominant. China has developed into a ‘carbonizing dragon’.”

Just recently, China became the world’s largest consumer of energy and emitter of CO2, overtaking the US. Emissions almost tripled between 1992 and 2007. By far the biggest part of this increase happened between 2002 and 2007. The average annual CO2 emission growth alone in this period is of similar magnitude than the total CO2 emissions in the UK. Exports show the fastest CO2 emission growth. However, in absolute terms, capital investments and the construction industry are prime, after exports had briefly taken the lead.

There are other important drivers. Urbanization for instance is a more important driver of emissions from household consumption than the sheer growth of population or even the decreasing household size, according to the study. When people move from the countryside to the city, this goes with lifestyle changes. Urban dwellers for instance tend to seek gas heating and electricity. They also depend more upon a transport infrastructure to get to their workplace. All of this implies a higher per capita carbon footprint.

The study uses a so-called structural decomposition analysis. Structural decomposition analysis allows to assign changes in emission over time to a set of drivers such as consumption growth, efficiency gains or structural change. The study highlights the challenges of assigning emission changes unambiguously to drivers when this growth is rapid. However, the study uses a very careful approach in this assignment by taking the average of all possible decompositions.

“The energy and carbon intensive nature of capital investment might be hard to avoid as China is an emerging economy building up its infrastructure,” says Giovanni Baiocchi from the University of East Anglia, UK. “The high levels of CO2 emissions from capital investment might therefore only be of temporary nature.” However, it is crucial that China now invests in the right kind of infrastructure to limit the growth of CO2 emissions that causes global warming.” The type of infrastructure put in place today will also largely determine future mitigation costs,” Baiocchi says. The study therefore emphasizes that putting a low carbon infrastructure in place in China as well as other emerging and developing economies from the beginning is a key global challenge for entering low emission pathways.

Article: Jan C. Minx, Giovanni Baiocchi, Glen P. Peters, Christopher L. Weber, Dabo Guan, Klaus Hubacek: A “Carbonizing Dragon”: China’s Fast Growing CO2 Emissions Revisited, Environmental Science and Technology, DOI: 10.1021/es201497mk

Weblink to the article: http://pubs.acs.org/doi/pdf/10.1021/es201497m

For further information please contact the PIK press office:

Phone: +49 331 288 25 07
E-mail: press@pik-potsdam.de

Mareike Schodder | PIK Potsdam
Further information:
http://www.pik-potsdam.de

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>