Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children with brain injuries have problems with story-telling

27.07.2010
Children with brain injuries have difficulty developing story-telling skills even though other language abilities, such as vocabulary, tend to catch up with other children as they mature, research at the University of Chicago shows.

"Our findings suggest that there may be limitations to the remarkable flexibility for language functions displayed by children with brain injuries," said Özlem Ece Demir, a researcher at the University of Chicago and lead author of a paper reporting the research. It is estimated that 1 in 4,000 infants has a brain injury known as pre- or perinatal brain lesions, mainly as a result of stroke, with risk factors involving both mothers and babies.

Demir is part of a University research team that has been studying children with brain lesions — areas of damaged tissue — to learn more about language development. Studying children with brain injuries gives researchers insights into theories of brain development, researchers said. For the study on story-telling, the team compared those children with children who have typical development.

Their findings are reported in "Narrative Skill in children with Early Unilaterail Brain Injury: A possible limit to Functional Plasticity" the paper, in the current issue of Developmental Science. Joining Demir were Chicago colleagues Susan Levine, the Stella M. Rowley Professor in Psychology, and Susan Goldin-Meadow, the Beardsley Ruml Distinguished Service Professor in Psychology.

The 11 children with brain injuries had a median age of six and included eight girls and three boys. The 20-member group of typically developing children included 11 girls and nine boys of approximately the same age as the children with brain injuries.

The children were asked to tell a story after given a situation that suggested a narrative, such as, "Once there was a little boy named Alan who had many different kinds of toys." They were prompted by questions such as "anything else?" until the children said they were done.

The stories were then analyzed for length, vocabulary diversity, syntactic complexity, overall structure and use of inference. The study found that the children with brain injuries produced shorter, less complex stories than typically developing children. Further testing showed that the children with brain injuries had similar vocabulary and sentence comprehension abilities to the typically developing children.

The ability to tell a story is a more complex activity than learning words and sentence structure, researchers said. Because that skill requires flexibility in using words, it may be more vulnerable to developmental delays than other aspects of language learning.

Because the children were just starting school, it is unclear if the difficulties in forming stories indicate a permanent condition or one that changes over time.

Other research has shown that parents can boost their children's story-telling skills by engaging them in conversations around narratives. The body of research may suggest that parents of children with brain injuries should pay extra attention to helping their children form narratives during their preschool years, researchers said.

The study is supported with grants from the National Institute of Child Health and Human Development and the Brain Research Foundation.

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>