Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Children with brain injuries have problems with story-telling

Children with brain injuries have difficulty developing story-telling skills even though other language abilities, such as vocabulary, tend to catch up with other children as they mature, research at the University of Chicago shows.

"Our findings suggest that there may be limitations to the remarkable flexibility for language functions displayed by children with brain injuries," said Özlem Ece Demir, a researcher at the University of Chicago and lead author of a paper reporting the research. It is estimated that 1 in 4,000 infants has a brain injury known as pre- or perinatal brain lesions, mainly as a result of stroke, with risk factors involving both mothers and babies.

Demir is part of a University research team that has been studying children with brain lesions — areas of damaged tissue — to learn more about language development. Studying children with brain injuries gives researchers insights into theories of brain development, researchers said. For the study on story-telling, the team compared those children with children who have typical development.

Their findings are reported in "Narrative Skill in children with Early Unilaterail Brain Injury: A possible limit to Functional Plasticity" the paper, in the current issue of Developmental Science. Joining Demir were Chicago colleagues Susan Levine, the Stella M. Rowley Professor in Psychology, and Susan Goldin-Meadow, the Beardsley Ruml Distinguished Service Professor in Psychology.

The 11 children with brain injuries had a median age of six and included eight girls and three boys. The 20-member group of typically developing children included 11 girls and nine boys of approximately the same age as the children with brain injuries.

The children were asked to tell a story after given a situation that suggested a narrative, such as, "Once there was a little boy named Alan who had many different kinds of toys." They were prompted by questions such as "anything else?" until the children said they were done.

The stories were then analyzed for length, vocabulary diversity, syntactic complexity, overall structure and use of inference. The study found that the children with brain injuries produced shorter, less complex stories than typically developing children. Further testing showed that the children with brain injuries had similar vocabulary and sentence comprehension abilities to the typically developing children.

The ability to tell a story is a more complex activity than learning words and sentence structure, researchers said. Because that skill requires flexibility in using words, it may be more vulnerable to developmental delays than other aspects of language learning.

Because the children were just starting school, it is unclear if the difficulties in forming stories indicate a permanent condition or one that changes over time.

Other research has shown that parents can boost their children's story-telling skills by engaging them in conversations around narratives. The body of research may suggest that parents of children with brain injuries should pay extra attention to helping their children form narratives during their preschool years, researchers said.

The study is supported with grants from the National Institute of Child Health and Human Development and the Brain Research Foundation.

William Harms | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>