Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children with autism show slower pupil responses

12.11.2009
Autism affects 1 in 150 children today, making it more common than childhood cancer, juvenile diabetes and pediatric AIDS combined. Despite its widespread effect, autism is not well understood and there are no objective medical tests to diagnose it.

Recently, University of Missouri researchers have developed a pupil response test that is 92.5 percent accurate in separating children with autism from those with typical development. In the study, MU scientists found that children with autism have slower pupil responses to light change.

"No comprehensive study has been conducted previously to evaluate the pupils' responses to light change, or PLR, in children with autism," said Gang Yao, associate professor of biological engineering in the MU College of Agriculture, Food and Natural Resources and the College of Engineering. "In this study, we used a short light stimulus to induce pupil light reflexes in children under both dark and bright conditions. We found that children with autism showed significant differences in several PLR parameters compared to those with typical development."

In the study, scientists used a computerized binocular infrared device, which eye doctors normally use for vision tests, to measure how pupils react to a 100-millisecond flash light. A pupil reaction test reveals potential neurological disorders in areas of the brain that autism might affect. The results showed that pupils of children diagnosed with autism were significantly slower to respond than those of a control group.

"There are several potential mechanisms currently under study," Yao said. "If these results are successfully validated in a larger population, PLR response might be developed into a biomarker that could have clinical implications in early screening for risks of autism. Studies have shown that early intervention will improve these children's developmental outcome."

Yao's study, completed with Xiaofei Fan, post-doctoral fellow at MU, Judith Miles, professor and William S. Thompson Endowed Chair in Child Health, and Nicole Takahashi, senior research specialist at MU's Thompson Center for Autism and Neurological Disorders, has been published in the Journal of Autism and Developmental Disorders.

In October, the scientists received a grant from the National Institutes of Health for the next phase. For this study, the researchers hope to amplify the earlier study's measurements and investigate any correlation between PLR and several other medical conditions that could be associated with autism.

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>