Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children's physical activity levels are not enough to counteract sedentary lifestyles

15.08.2012
Children who spend more than three-quarters of their time engaging in sedentary behaviour, such as watching TV and sitting at computers, have up to nine times poorer motor coordination than their more active peers, reveals a study published in the American Journal of Human Biology.

The study, involving Portuguese children, found that physical activity alone was not enough to overcome the negative effect of sedentary behaviour on basic motor coordination skills such as walking, throwing or catching, which are considered the building blocks of more complex movements.

"Childhood is a critical time for the development of motor coordination skills which are essential for health and well-being," said lead author Dr Luis Lopes, from the University of Minho. "We know that sedentary lifestyles have a negative effect on these skills and are associated with decreased fitness, lower self-esteem, decreased academic achievement and increased obesity."

Dr Lopes' team studied 110 girls and 103 boys aged nine to ten from 13 urban elementary schools. The children's sedentary behaviour and physical activity were objectively measured with accelerometers (a small device that children attach to their waist that quantifies movement counts and intensities) over five consecutive days. Motor coordination was evaluated with the KTK test (Körperkoordination Test für Kinder), which includes balance, jumping laterally, hopping on one leg over an obstacle and shifting platforms.

The tests were supplemented with a questionnaire for parents to assess health variables, before the authors compiled the results into three models to calculate odd ratios for predicting motor coordination. These were adjusted for physical activity and accelerometer wear time, waist to height ratio and home variables.

On average the children spent 75.6% of their time being sedentary, but the impact on motor coordination was found to be greater on boys than girls.

Girls who spent 77.3% or more of their time being sedentary were 4 to 5 times less likely to have normal motor coordination than more active girls. However, boys who were sedentary for more than 76% of their time were between 5 to 9 times less likely to have good or normal motor coordination than their active peers.

"It is very clear from our study that a high level of sedentary behaviour is an independent predictor of low motor coordination, regardless of physical activity levels and other key factors" said Lopes. "High sedentary behaviour had a significant impact on the children's motor coordination, with boys being more adversely affected than girls."

Until now there has been little research into the links between sedentary behaviour and motor coordination, but these findings reveal that physical activity did not counteract the negative effects that high levels of sedentary behaviour had on motor coordination.

"The results demonstrate the importance of setting a maximum time for sedentary behaviour, while encouraging children to increase their amount of physical activity," concluded Lopes. "We hope that our findings will make a valuable contribution to the debate on child health and encourage future investigations on this subject."

Ben Norman | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>