Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children's physical activity levels are not enough to counteract sedentary lifestyles

15.08.2012
Children who spend more than three-quarters of their time engaging in sedentary behaviour, such as watching TV and sitting at computers, have up to nine times poorer motor coordination than their more active peers, reveals a study published in the American Journal of Human Biology.

The study, involving Portuguese children, found that physical activity alone was not enough to overcome the negative effect of sedentary behaviour on basic motor coordination skills such as walking, throwing or catching, which are considered the building blocks of more complex movements.

"Childhood is a critical time for the development of motor coordination skills which are essential for health and well-being," said lead author Dr Luis Lopes, from the University of Minho. "We know that sedentary lifestyles have a negative effect on these skills and are associated with decreased fitness, lower self-esteem, decreased academic achievement and increased obesity."

Dr Lopes' team studied 110 girls and 103 boys aged nine to ten from 13 urban elementary schools. The children's sedentary behaviour and physical activity were objectively measured with accelerometers (a small device that children attach to their waist that quantifies movement counts and intensities) over five consecutive days. Motor coordination was evaluated with the KTK test (Körperkoordination Test für Kinder), which includes balance, jumping laterally, hopping on one leg over an obstacle and shifting platforms.

The tests were supplemented with a questionnaire for parents to assess health variables, before the authors compiled the results into three models to calculate odd ratios for predicting motor coordination. These were adjusted for physical activity and accelerometer wear time, waist to height ratio and home variables.

On average the children spent 75.6% of their time being sedentary, but the impact on motor coordination was found to be greater on boys than girls.

Girls who spent 77.3% or more of their time being sedentary were 4 to 5 times less likely to have normal motor coordination than more active girls. However, boys who were sedentary for more than 76% of their time were between 5 to 9 times less likely to have good or normal motor coordination than their active peers.

"It is very clear from our study that a high level of sedentary behaviour is an independent predictor of low motor coordination, regardless of physical activity levels and other key factors" said Lopes. "High sedentary behaviour had a significant impact on the children's motor coordination, with boys being more adversely affected than girls."

Until now there has been little research into the links between sedentary behaviour and motor coordination, but these findings reveal that physical activity did not counteract the negative effects that high levels of sedentary behaviour had on motor coordination.

"The results demonstrate the importance of setting a maximum time for sedentary behaviour, while encouraging children to increase their amount of physical activity," concluded Lopes. "We hope that our findings will make a valuable contribution to the debate on child health and encourage future investigations on this subject."

Ben Norman | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>