Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First child born following embryo screening with new genome analysis technique

08.07.2013
Validation studies underline accuracy of 'next generation sequencing' for embryo selection in IVF

The first birth has been achieved following the analysis of embryos using a new genome sequencing technique which promises to revolutionise embryo selection for IVF. The technique, which has never before been applied in the screening of embryos, is reported today at the annual meeting of ESHRE by Dr Dagan Wells of the NIHR Biomedical Research Centre at the University of Oxford, UK.

The analysis technique is known as "next generation sequencing", a powerful method capable of decoding entire genomes. Vast quantities of DNA data are produced from each sample tested, simultaneously revealing information on the inheritance of genetic disorders, chromosome abnormalities and mitochondrial mutations. Next generation sequencing (NGS) is already revolutionising many areas of genetic research and diagnostics, said Dr Wells, and, when applied to the assessment of embryos, will allow the concurrent analysis of serious inherited disorders and lethal chromosome abnormalities. "Next generation sequencing provides an unprecedented insight into the biology of embryos," said Dr Wells.

The identification of an embryo destined to implant in the uterus and form a pregnancy remains the holy grail of IVF. On average, only around 30% of embryos currently selected for transfer actually implant. The reason for this high failure rate is unknown, but the prime suspects are unidentified genetic or chromosomal defects. Several genetic screening methods have been introduced over the past decade, but all have been shown to have drawbacks (and have not realised their potential) when tested in randomised clinical trials. This new NGS technique developed by Dr Wells and colleagues, however, seems to overcome the major drawbacks of current methods:

•Complete chromosome information can be produced revealing abnormalities often responsible for miscarriage
•Serious gene defects can be identified at the same time
•The analysis can be completed rapidly (around 16 hours), thus avoiding the need for embryo freezing while awaiting results

•The test could greatly reduce the costs of embryo screening, which is currently an expensive add-on to IVF.

The study described today was designed to test the accuracy and predictability of NGS in embryo selection. The validation was performed on multiple cells from cell-lines with known chromosome abnormalities, gene defects (cystic fibrosis) or mitochondrial DNA mutations.

Additionally, cells from 45 embryos, previously shown to be abnormal with another testing technique, were reanalysed by NGS in a blinded fashion. After high accuracy had been demonstrated, the method was applied clinically, with cells sampled from seven five-day-old embryos (blastocysts) produced by two couples undergoing IVF. The mothers were 35 and 39 years of age and one couple had a history of miscarriage.

NGS analysis in these two IVF patients identified three chromosomally healthy blastocysts in the first and two in the second; single embryo transfers based upon these results led to healthy pregnancies in both cases. The first pregnancy ended with the delivery of a healthy boy in June. Dr Wells, who led the international research team behind the study, said: "Many of the embryos produced during infertility treatments have no chance of becoming a baby because they carry lethal genetic abnormalities. Next generation sequencing improves our ability to detect these abnormalities and helps us identify the embryos with the best chances of producing a viable pregnancy. Potentially, this should lead to improved IVF success rates and a lower risk of miscarriage.

"In the past few years, results from randomised clinical trials have suggested that most IVF patients would benefit from embryo chromosome screening, with some studies reporting a 50% boost in pregnancy rates. However, the costs of these genetic tests are relatively high, putting them beyond the reach of many patients. Next generation sequencing is a way which could make chromosome testing more widely available to a greater number of patients, improving access by cutting the costs. Our next step is a randomised clinical trial to reveal the true efficacy of this approach - and this will begin later this year."

Abstract no: 63 Monday, 15.45 hrs BST

A novel embryo screening technique provides new insights into embryo biology and yields the first pregnancies following genome sequencing

Note: When obtaining outside comment, journalists are requested to ensure that their contacts are aware of the embargo on this release.

For further information on the details of this press release, contact:

Christine Bauquis at ESHRE
Mobile: +32 (0)499 25 80 46
Email: christine@eshre.eu

Christine Bauquis | EurekAlert!
Further information:
http://www.eshre.eu

Further reports about: DNA DNA mutation ESHRE IVF fertility treatment genetic disorder genome sequencing

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>