Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First child born following embryo screening with new genome analysis technique

08.07.2013
Validation studies underline accuracy of 'next generation sequencing' for embryo selection in IVF

The first birth has been achieved following the analysis of embryos using a new genome sequencing technique which promises to revolutionise embryo selection for IVF. The technique, which has never before been applied in the screening of embryos, is reported today at the annual meeting of ESHRE by Dr Dagan Wells of the NIHR Biomedical Research Centre at the University of Oxford, UK.

The analysis technique is known as "next generation sequencing", a powerful method capable of decoding entire genomes. Vast quantities of DNA data are produced from each sample tested, simultaneously revealing information on the inheritance of genetic disorders, chromosome abnormalities and mitochondrial mutations. Next generation sequencing (NGS) is already revolutionising many areas of genetic research and diagnostics, said Dr Wells, and, when applied to the assessment of embryos, will allow the concurrent analysis of serious inherited disorders and lethal chromosome abnormalities. "Next generation sequencing provides an unprecedented insight into the biology of embryos," said Dr Wells.

The identification of an embryo destined to implant in the uterus and form a pregnancy remains the holy grail of IVF. On average, only around 30% of embryos currently selected for transfer actually implant. The reason for this high failure rate is unknown, but the prime suspects are unidentified genetic or chromosomal defects. Several genetic screening methods have been introduced over the past decade, but all have been shown to have drawbacks (and have not realised their potential) when tested in randomised clinical trials. This new NGS technique developed by Dr Wells and colleagues, however, seems to overcome the major drawbacks of current methods:

•Complete chromosome information can be produced revealing abnormalities often responsible for miscarriage
•Serious gene defects can be identified at the same time
•The analysis can be completed rapidly (around 16 hours), thus avoiding the need for embryo freezing while awaiting results

•The test could greatly reduce the costs of embryo screening, which is currently an expensive add-on to IVF.

The study described today was designed to test the accuracy and predictability of NGS in embryo selection. The validation was performed on multiple cells from cell-lines with known chromosome abnormalities, gene defects (cystic fibrosis) or mitochondrial DNA mutations.

Additionally, cells from 45 embryos, previously shown to be abnormal with another testing technique, were reanalysed by NGS in a blinded fashion. After high accuracy had been demonstrated, the method was applied clinically, with cells sampled from seven five-day-old embryos (blastocysts) produced by two couples undergoing IVF. The mothers were 35 and 39 years of age and one couple had a history of miscarriage.

NGS analysis in these two IVF patients identified three chromosomally healthy blastocysts in the first and two in the second; single embryo transfers based upon these results led to healthy pregnancies in both cases. The first pregnancy ended with the delivery of a healthy boy in June. Dr Wells, who led the international research team behind the study, said: "Many of the embryos produced during infertility treatments have no chance of becoming a baby because they carry lethal genetic abnormalities. Next generation sequencing improves our ability to detect these abnormalities and helps us identify the embryos with the best chances of producing a viable pregnancy. Potentially, this should lead to improved IVF success rates and a lower risk of miscarriage.

"In the past few years, results from randomised clinical trials have suggested that most IVF patients would benefit from embryo chromosome screening, with some studies reporting a 50% boost in pregnancy rates. However, the costs of these genetic tests are relatively high, putting them beyond the reach of many patients. Next generation sequencing is a way which could make chromosome testing more widely available to a greater number of patients, improving access by cutting the costs. Our next step is a randomised clinical trial to reveal the true efficacy of this approach - and this will begin later this year."

Abstract no: 63 Monday, 15.45 hrs BST

A novel embryo screening technique provides new insights into embryo biology and yields the first pregnancies following genome sequencing

Note: When obtaining outside comment, journalists are requested to ensure that their contacts are aware of the embargo on this release.

For further information on the details of this press release, contact:

Christine Bauquis at ESHRE
Mobile: +32 (0)499 25 80 46
Email: christine@eshre.eu

Christine Bauquis | EurekAlert!
Further information:
http://www.eshre.eu

Further reports about: DNA DNA mutation ESHRE IVF fertility treatment genetic disorder genome sequencing

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>