Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemicals remaining after wastewater treatment change the gender of fish

22.06.2010
Male fish that used to be feminized after chemicals, such as the pharmaceutical ethinylestradiol, made it through the Boulder, Colo., Wastewater Treatment Plant and into Boulder Creek, are taking longer to become feminized after a plant upgrade to an activated sludge process, according to a new study. The results will be presented Sunday at The Endocrine Society's 92nd Annual Meeting in San Diego.

Although the levels of the chemicals that the fish swam in were very low even before the upgrade, the chemicals are endocrine disrupters. They mimic estrogen and may disrupt the endocrine (hormone) system of both animals and humans, said the study's principal investigator, David Norris, PhD, an integrative physiology professor at the University of Colorado at Boulder.

Norris' team reported in 2006 that native male fish in Boulder Creek decreased in numbers with respect to females and numerous intersex fish were found downstream of the wastewater treatment plant. After a technology upgrade to the wastewater treatment plant in 2008, the reproductive disruption in the fish was far less pronounced. However, Norris said the study results should still concern people.

"The fish are a wake-up call," Norris said. "Our bodies and those of the much more sensitive human fetus are being exposed everyday to a variety of chemicals that are capable of altering not only our development and physiology but that of future generations as well."

With other scientists, Norris studied samples of the wastewater effluent, the plant-treated water that enters the stream and becomes another city's drinking water. Grants from the U.S. Environmental Protection Agency (EPA) and the city of Boulder supported this research.

They found other endocrine disrupters, including synthetic and natural reproductive steroids. They believe the chemicals come from natural female hormones and birth control pills excreted via urine and from detergents, cosmetics and other consumer products flushed down toilets and drains. The amount of estrogens in the sampled effluent was enough to explain the effects on the fish "downstream" from the treatment plant—in the river below the plant, according to Norris. The researchers saw no signs of reproductive disruption in fish upstream.

Also, the investigators exposed adult male fathead minnows to wastewater effluent they diluted with water taken from upstream of the plant. After seven days' exposure to this water, the fish had suppressed male sex characteristics and greatly elevated levels of the protein vitellogenin. Female fish make vitellogenin under the influence of estrogens, and male fish produce very little of it, so elevated levels in males indicate estrogen exposure, Norris explained.

After the technology upgrade to the wastewater treatment plant in 2008, the effluent was considerably less estrogenic to the fish. After the treatment plant's upgrade, the minnows exhibited less intense loss of male sex characteristics, an initial analysis found. "It took 28 days to get a significant elevation in vitellogenin and then only in 100 percent effluent," Norris said. "However, these improvements seen in wildlife will not substantially lessen the risk to human health because drinking water is not the major source of estrogenic chemicals for people."

Aaron Lohr | EurekAlert!
Further information:
http://www.endo-society.org

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>