Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemicals remaining after wastewater treatment change the gender of fish

22.06.2010
Male fish that used to be feminized after chemicals, such as the pharmaceutical ethinylestradiol, made it through the Boulder, Colo., Wastewater Treatment Plant and into Boulder Creek, are taking longer to become feminized after a plant upgrade to an activated sludge process, according to a new study. The results will be presented Sunday at The Endocrine Society's 92nd Annual Meeting in San Diego.

Although the levels of the chemicals that the fish swam in were very low even before the upgrade, the chemicals are endocrine disrupters. They mimic estrogen and may disrupt the endocrine (hormone) system of both animals and humans, said the study's principal investigator, David Norris, PhD, an integrative physiology professor at the University of Colorado at Boulder.

Norris' team reported in 2006 that native male fish in Boulder Creek decreased in numbers with respect to females and numerous intersex fish were found downstream of the wastewater treatment plant. After a technology upgrade to the wastewater treatment plant in 2008, the reproductive disruption in the fish was far less pronounced. However, Norris said the study results should still concern people.

"The fish are a wake-up call," Norris said. "Our bodies and those of the much more sensitive human fetus are being exposed everyday to a variety of chemicals that are capable of altering not only our development and physiology but that of future generations as well."

With other scientists, Norris studied samples of the wastewater effluent, the plant-treated water that enters the stream and becomes another city's drinking water. Grants from the U.S. Environmental Protection Agency (EPA) and the city of Boulder supported this research.

They found other endocrine disrupters, including synthetic and natural reproductive steroids. They believe the chemicals come from natural female hormones and birth control pills excreted via urine and from detergents, cosmetics and other consumer products flushed down toilets and drains. The amount of estrogens in the sampled effluent was enough to explain the effects on the fish "downstream" from the treatment plant—in the river below the plant, according to Norris. The researchers saw no signs of reproductive disruption in fish upstream.

Also, the investigators exposed adult male fathead minnows to wastewater effluent they diluted with water taken from upstream of the plant. After seven days' exposure to this water, the fish had suppressed male sex characteristics and greatly elevated levels of the protein vitellogenin. Female fish make vitellogenin under the influence of estrogens, and male fish produce very little of it, so elevated levels in males indicate estrogen exposure, Norris explained.

After the technology upgrade to the wastewater treatment plant in 2008, the effluent was considerably less estrogenic to the fish. After the treatment plant's upgrade, the minnows exhibited less intense loss of male sex characteristics, an initial analysis found. "It took 28 days to get a significant elevation in vitellogenin and then only in 100 percent effluent," Norris said. "However, these improvements seen in wildlife will not substantially lessen the risk to human health because drinking water is not the major source of estrogenic chemicals for people."

Aaron Lohr | EurekAlert!
Further information:
http://www.endo-society.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>