Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charles Drew cancer studies with yeast yield excellent results

03.02.2010
Cancer study yields results

A researcher at Charles Drew University of Medicine and Science is investigating the potential use of non-pathogenic baker's yeast as a promising, natural therapy for cancer.

Dr. Mamdooh Ghoneum presented his findings Tuesday, Feb. 2 at a special conference on "Cell Death Mechanism," sponsored by the American Association for Cancer Research (AACR) at the Omni San Diego Hotel in San Diego.

"The central focus of the meeting is cell death regulation and how to mine and exploit it for therapeutic gain," a written evaluation of the AACR special conference states. "This conference includes new complexities of cell death and cell survival, new technologies, and clinical translational aspects necessary for the evolution of new therapeutic strategies."

For more than two decades, Dr. Ghoneum has pursued a theory that cancer cells self destruct when exposed to small quantities of yeast.

In laboratory tests, Dr. Ghoneum exposed cancer cells to yeast and observed as they ingested the yeast—through a process known as phagocytosis—and then the cancer cells died. First, he investigated this phenomenon in test tubes (in vitro), introducing yeast to breast, tongue, colon, and skin cancers.

"I have no doubt that I am close to unlocking the mystery as to why cancer cells weaken to the point of destruction after eating common baker's yeast," Dr. Ghoneum said. "The cells just gravitate to the yeast. I call it fatal attraction."

In later experiments, yeast was injected inside the tumors of mice and, again, he observed a decrease in the size of the tumor mass. Then, in his most recent tests, he examined whether yeast could kill cancer cells in mice that had cancer metastasized to the lung. These tests also showed significant clearance of the cancer cells from the lung.

"We observed that when the cancer cells eat the yeast, they die," Dr. Ghoneum said.

The next step, Dr. Ghoneum said, is to conduct clinical trials to determine safety, efficacy of dosage and a method of treatment.

Born in Egypt, Dr. Ghoneum earned his Ph.D. at the University of Tokyo in 1980 and did his postdoctoral studies at UCLA, School of Medicine. Dr. Ghoneum is an internationally recognized immunologist, who is an expert in Cancer Immune Therapy. He holds patents for inventing three biological response modifiers for the treatment of cancer. He has been a researcher and professor at Charles Drew University for twenty-five years, specializing in identifying natural cures for cancer.

Dr. Ghoneum's work has been studied and duplicated by leading scientists worldwide with results published in top medical journals. His findings have been confirmed by similar studies at the U.S. Department of Health and Science, National Institute of Health (NIH).

"There is a possibility that we could find a way to treat not only the local tumor, but the tumor that has spread throughout the body," said Dr. Gus Gill, Chairman Emeritus, Department of Otolaryngology, Charles Drew University. "As a surgeon, I always thought that a better way was to try to get rid of surgery (as a necessity) when dealing with cancer."

For more information on Dr. Ghoneum's research please view the video: http://www.youtube.com/watch?v=yoWNQ6-qm94

Elia Esparza | EurekAlert!
Further information:
http://www.cdrewu.edu

Further reports about: AACR Cancer Cell Death Mechanism Science TV cancer cells cell death health services

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>