Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Change your walking style, change your mood

16.10.2014

Our mood can affect how we walk — slump-shouldered if we're sad, bouncing along if we're happy. Now researchers have shown it works the other way too — making people imitate a happy or sad way of walking actually affects their mood.

Subjects who were prompted to walk in a more depressed style, with less arm movement and their shoulders rolled forward, experienced worse moods than those who were induced to walk in a happier style, according to the study published in the Journal of Behavior Therapy and Experimental Psychiatry.

CIFAR Senior Fellow Nikolaus Troje (Queen's University), a co-author on the paper, has shown in past research that depressed people move very differently than happy people.

"It is not surprising that our mood, the way we feel, affects how we walk, but we want to see whether the way we move also affects how we feel," Troje says.

He and his colleagues showed subjects a list of positive and negative words, such as "pretty," "afraid" and "anxious" and then asked them to walk on a treadmill while they measured their gait and posture. A screen showed the subjects a gauge that moved left or right depending on whether their walking style was more depressed or happier. But the subjects didn't know what the gauge was measuring. Researchers told some subjects to try and move the gauge left, while others were told to move it right.

"They would learn very quickly to walk the way we wanted them to walk," Troje says.

Afterward, the subjects had to write down as many words as they could remember from the earlier list of positive and negative words. Those who had been walking in a depressed style remembered many more negative words. The difference in recall suggests that the depressed walking style actually created a more depressed mood.

The study builds on our understanding of how mood can affect memory. Clinically depressed patients are known to remember negative events, particularly those about themselves, much more than positive life events, Troje says. And remembering the bad makes them feel even worse.

"If you can break that self-perpetuating cycle, you might have a strong therapeutic tool to work with depressive patients."

The study also contributes to the questions asked in CIFAR's Neural Computation & Adaptive Perception program, which aims to unlock the mystery of how our brains convert sensory stimuli into information and to recreate human-style learning in computers.

"As social animals we spend so much time watching other people, and we are experts at retrieving information about other people from all sorts of different sources," Troje says. Those sources include facial expression, posture and body movement. Developing a better understanding of the biological algorithms in our brains that process stimuli — including information from our own movements — can help researchers develop better artificial intelligence, while learning more about ourselves in the process.

Publication

Michalak, J., Rohde, K., Troje, N. F. (2015), "How we walk affects what we remember: Gait modifications through biofeedback change negative affective memory bias," Journal of Behavior Therapy and Experimental Psychiatry 46:121 - 125 (2014).

About CIFAR

CIFAR creates knowledge that will transform our world. The Institute brings together outstanding researchers to work in global networks that address some of the most important questions our world faces today. Our networks help support the growth of research leaders and are catalysts for change in business, government and society.

Established in 1982, CIFAR is a Canadian-based, global organization, comprised of nearly 350 fellows, scholars and advisors from more than 100 institutions in 16 countries. CIFAR partners with the Government of Canada, provincial governments, individuals, foundations, corporations and research institutions to extend our impact in the world.

Contacts

Lindsay Jolivet
Writer & Media Relations Specialist
Canadian Institute for Advanced Research
lindsay.jolivet@cifar.ca
(416) 971-4876

Nikolaus Troje
CIFAR Senior Fellow
Queen's University
troje@queensu.ca
(613) 533-6017

Lindsay Jolivet | Eurek Alert!
Further information:
http://www.cifar.ca

Further reports about: CIFAR Change Psychiatry body movement happy people movement networks social animals stimuli walk

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>