Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The cerebellum provides clues to the nature of human intelligence

09.03.2011
New study suggests link between cerebellar volume and cognitive ability in older adults

Research suggests that intelligence in humans is controlled by the part of the brain known as the 'cortex', and most theories of age-related cognitive decline focus on cortical dysfunction.

However, a new study of Scottish older adults, reported in the April 2011 issue of Elsevier's Cortex (http://www.sciencedirect.com/science/journal/00109452), suggests that grey matter volume in the 'cerebellum' at the back of the brain predicts cognitive ability, and keeping those cerebellar networks active may be the key to keeping cognitive decline at bay.

The study looked at 228 older adults living independently in the Aberdeen area, who had been part of the Scottish Mental Survey of 1947. This survey had tested Scottish children born in 1936 and at school on 4th June 1947 using the Moray House intelligence test. The cognitive abilities of the participants were tested again, now at age 63-65 years, and their brains were also scanned, using a neuroimaging technique called voxel-based morphometry (VBM), to determine the volumes of grey and white matter in frontal areas and the cerebellum.

The most interesting finding from this study is that grey matter volume in the cerebellum predicts general intelligence. However, results differ for men and women, with men showing a stronger relationship between brain volume in the cerebellum and general intelligence.

It has long been recognised that the cerebellum is involved in sensory-motor functions, including balance and timing of movements, but it is now believed that the cerebellum also plays an important role in higher-level cognitive abilities. "General intelligence is correlated with many basic aspects of information processing efficiency which I believe depend upon the functioning of the cerebellum, including the speed and consistency of our perceptions and decisions, and the speed with which we learn new skills", notes Dr. Michael Hogan, first author of the study. "This is exciting research, as it suggests that there may be a backdoor route into maintaining higher cortical functions in old age, that is, through the sustained activation of cerebellar networks via novel sensory-motor and cognitive activities, all of which I believe the cerebellum seeks to regulate and automate, working in concert with the cortex."

Notes to Editors:

The article is "Cerebellar brain volume accounts for variance in cognitive performance in older adults" by Michael J. Hogan, Roger T. Staff, Brendan P. Bunting, Alison D. Murray, Trevor S. Ahearn, Ian J. Deary, and Lawrence J. Whalley, and appears in Cortex, Volume 47, Issue 4 (April 2011), published by Elsevier in Italy. Full text of the article featured above is available to members of the media upon request. Please contact the Elsevier press office, newsroom@elsevier.com. To schedule an interview, contact Dr Michael Hogan, michael.hogan@nuigalway.ie.

About Cortex

Cortex is an international journal devoted to the study of cognition and of the relationship between the nervous system and mental processes, particularly as these are reflected in the behaviour of patients with acquired brain lesions, normal volunteers, children with typical and atypical development, and in the activation of brain regions and systems as recorded by functional neuroimaging techniques. It was founded in 1964 by Ennio De Renzi. The Editor in-chief of Cortex is Sergio Della Sala, Professor of Human Cognitive Neuroscience at the University of Edinburgh. Fax: 0131 6513230, e-mail: cortex@ed.ac.uk. Cortex is available online at http://www.sciencedirect.com/science/journal/00109452

About Elsevier

Elsevier is a world-leading publisher of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including the Lancet (www.thelancet.com) and Cell (www.cell.com), and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier's online solutions include ScienceDirect (www.sciencedirect.com), Scopus (www.scopus.com), Reaxys (www.reaxys.com), MD Consult (www.mdconsult.com) and Nursing Consult (www.nursingconsult.com), which enhance the productivity of science and health professionals, and the SciVal suite (www.scival.com) and MEDai's Pinpoint Review (www.medai.com), which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier (www.elsevier.com) employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC (www.reedelsevier.com), a world-leading publisher and information provider. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Laura Fabri | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>