Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Centuries of Sailors Weren’t Wrong: Looking at the Horizon Stabilizes Posture

27.01.2011
Everybody who has been aboard a ship has heard the advice: if you feel unsteady, look at the horizon.

For a study published in Psychological Science, a journal of the Association for Psychological Science, researchers measured how much people sway on land and at sea and found there’s truth in that advice; people aboard a ship are steadier if they fix their eyes on the horizon.

Thomas A. Stoffregen of the University of Minnesota has been studying “body sway” for decades—how much people rock back and forth in different situations, and what this has to do with motion sickness. In just a normal situation, standing still, people move back and forth by about four centimeters every 12 to 15 seconds. Stoffregen and his coauthors, Anthony M. Mayo and Michael G. Wade, wanted to know how this changes when you’re standing on a ship.

To study posture at sea, Stoffregen made contact with the U.S. consortium that runs scientific research ships. “I’m really an oddball for these folks, because they’re studying oceanography, like hydrothermal vents. Here’s this behavioral scientist, calling them up,” he says. He boards a ship when it is travelling between different projects—for example, in this study, he rode on the research vessel Atlantis as it went between two points in the Gulf of California. “It had nothing to do with the fact that I like cruising near the tropics,” he jokes. Since the ships are between scientific expeditions, he can sleep in one of the empty bunks normally reserved for ocean scientists, and crew members volunteer to take part in his study.

The study compared the same people standing on dry land—a dock in Guaymas, Mexico—and aboard the ship. In each experiment, the crew member stood comfortably on a force plate and focused on a target—either something about 16 inches in front of them, or a far-off point; a distant mountain when standing on land or the horizon when standing on the ship. On land, people were steadier when they looked at the close-up target and swayed more when they looked far away. On the ship, however, they were steadier when they looked at the horizon.

This is actually counterintuitive, Stoffregen says. When you’re standing on a ship, you need to adjust to the ship’s movement, or you’ll fall over. So why would it help to look at the horizon and orient yourself to the Earth? He thinks it may help stabilize your body by helping you differentiate between sources of movement—the natural movement coming from your body and the movement caused by the ship.

Stoffregen thinks this motion of bodies may predict motion sickness. “It’s the people who become wobbly who subsequently become motion sick,” he says. He had originally hoped to study seasickness directly, but so far his subjects have all been seasoned crew members who are used to the ship’s movement and don’t get sick; his dream is to do his experiments aboard a ship full of undergraduate oceanography majors going to sea for the first time. “I’d give my right arm to get on one of those.”

For more information about this study, please contact: Thomas Stoffregen at tas@umn.edu.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Postural Effects of the Horizon on Land and at Sea" and access to other Psychological Science research findings, please contact Keri Chiodo at 202-293-9300 or kchiodo@psychologicalscience.org

Keri Chiodo | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>