Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellulosic biofuel technology will generate low-cost green fuel

05.03.2009
Cellulosic biofuels offer similar, if not lower, costs and very large reductions in greenhouse gas emissions compared to petroleum-derived fuels. That's one of the key take-home messages from a series of expert papers on "The Role of Biomass in America's Energy Future (RBAEF)" in a special issue of Biofuels, Bioproducts and Biorefining.

The journal believes that the collection, which includes a comparative analysis of more than a dozen mature technology biomass refining scenarios, will make a major contribution to the ongoing debate on the future potential of biofuels in the USA.

Professor Lee Lynd, the driving force behind the RBAEF project and a major contributor to the special issue, explains the background to the project. "The RBAEF project, which was launched in 2003, is the most comprehensive study of the performance and cost of mature technologies for producing energy from biomass to date" he says. "Involving experts from 12 institutions, it is jointly led by Dartmouth College, New Hampshire, and the Natural Resources Defense Council and sponsored by the US Department of Energy, the Energy Foundation and the National Commission on Energy Policy.

"It seeks to identify and evaluate paths by which biomass can make a large contribution to energy services in the USA and determine how we can accelerate biomass energy use. In addressing these issues, the study has focussed on future, mature technologies rather than today's technology."

Professor Lynd, from Dartmouth College's Thayer School of Engineering is co-author of five of the eight papers in the special issue.

Three of these papers are being made available free on the journal's website so that they can be accessed as widely as possible by researchers and policy makers.

They include a major paper in which Laser et al carry out a comparative analysis of 14 of the mature technology biomass refining scenarios outlined in detail in the preceding expert papers, looking at each process for efficiency, environmental impact and process economics.

"We conclude that mature biomass refining is highly competitive with the fuels currently available, based on all the factors considered" says Professor Lynd. "The most promising class of processes we analysed combined the biological fermentation of carbohydrates to fuels with advanced technologies that thermochemically convert process residues to electrical power and, or, additional liquid fuels. One of our important findings, which contradicts conventional wisdom, is that similar greenhouse gas emission reductions on a per ton biomass basis are anticipated for the production of liquid fuels and electricity via mature technology."

The researchers also found that the mature cellulosic biofuel technologies analysed:

Have the potential to realise efficiencies on par with petroleum-based fuels.
Require modest volumes of process water.
Achieve production costs consistent with gasoline when oil prices are at about $30 a barrel.

Two other papers are also being made freely available by the journal until 31 May 2009.

The introductory paper by Lynd et al, which outlines the RBAEF project and provides an operative definition of, and method for estimating, mature technology. It also looks at a rationale for choosing the model feedstock, a list of the conversion technologies considered and, as a point of reference, a brief overview of the energy flows through a typical petroleum refinery.

A paper on the co-production of ethanol and power from switchgrass by Laser et al, which evaluates three process designs for producing ethanol and electricity from switchgrass. This shows that mature technology designs significantly improve both the efficiency of the process and the cost when compared to base case cellulosic ethanol technology. The resulting fossil fuel displacement is decidedly positive and production costs compete well with gasoline, even at relatively low prices.

"The RBAEF project has examined many potential biorefinery scenarios, but there are still aspects that we did not examine" says Professor Lynd.

"For example, a more extensive field-to-wheels life cycle assessment that incorporates the RBAEF process design results – including a comparison of alternative feedstocks – would be useful, as would an evaluation of chemicals co-production.

"Also, the papers in this special issue do not directly address the issue of gracefully reconciling large-scale biofuel production with competing land use and this clearly needs more study.

"Finally, it would be of great value to look at how we could find ways to accelerate progress towards the sustainable, large-scale production of cellulosic biofuels."

The journal's Editor-in-Chief, Professor Bruce E Dale, from Michigan State University, USA, believes that this special edition of Biofuels, Bioproducts and Biorefining will be invaluable to researchers and policy makers alike.

"The journal is honoured to publish this special edition. We believe it sets a new benchmark in how we think about the potential of cellulosic biofuels to provide large-scale energy services, both in the USA and around the world" he says. "We sincerely congratulate Dr Lynd and his coworkers on the RBAEF project - particularly Dr Mark Laser of Dartmouth College who worked so effectively to pull the papers together. This is truly a landmark contribution."

"By making key papers in this series free we hope that this special issue of the journal will provide greater understanding of the exciting possibilities that biofuels can offer and help policy makers to make informed choices."

Annette Whibley | EurekAlert!
Further information:
http://www.virgin.net
http://www.interscience.wiley.com/biofpr

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>