Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular repair could reduce premature aging

02.11.2011
Researchers have identified a potential drug therapy for a premature ageing disease that affects children causing them to age up to eight times as fast as the usual rate.

The study is the first to outline how to limit and repair DNA damage defects in cells and could provide a model for understanding processes that cause us to age.

The findings could have significant benefits, such as reducing degeneration of some tissues in older age, and could assist health management in countries, including the UK, where average life expectancy is extending, according to the researchers.

The first results of the 18-month study, led by Durham University, are published in the journal Human Molecular Genetics.

Researchers looked at a group of inherited degenerative disorders called Laminopathies that are caused by mutations in the gene LMNA. The most severe disorders linked to mutation in this gene include Hutchinson Gilford Progeria Syndrome (HGPS), a fatal disease that causes premature ageing in children.

The Durham University and University of Bologna team used in-vitro models and molecular imaging techniques to measure levels of oxidative stress and DNA damage in cells. Oxidative stress relates to the dynamics of cells and the body's ability to detoxify and repair itself. When cells are stressed, levels of highly reactive molecules known as reactive oxygen species (ROS) can increase dramatically. This can result in significant damage to cell structures and to DNA which is one underlying cause of premature ageing and standard ageing.

The team monitored changes in thousands of 'crinkly', damaged cells after administering NAC, a widely-used and well-tolerated drug. They found that while this drug did not affect some aspects of cell stress that are effectively controlled by currently used drugs, it very effectively controlled ROS generation and DNA damage. The results suggest that administration of NAC in combination with currently used drugs might improve the health of children with progeria.

Professor Chris Hutchison, a member of the Biophysical Sciences Institute, Durham University, said: "In children with progeria, we can see that double-strand breaks in the DNA architecture of cells increase which in turn adds to poor rates of cell growth. Our treatment of these cells with the drug N-acetyl cysteine (NAC) reversed both of these effects.

"Mutations in the LMNA gene cause more diseases, such as muscular dystrophy, than any other that we know. We've found that DNA damage can be controlled and our findings could be an important step to helping both children with progeria and older people to live lives that are less debilitating in terms of health problems."

The researchers said their findings were at an early stage and further studies and human clinical trials would be needed to develop effective drug treatments.

Professor Hutchison added: "We are using a careful approach that will look at patients with progeria to see if there's a model that can be used for wider medicine. It would be great to find a way to help relieve some of the effects of progeria and to extend the children's lives, whilst also finding a way to help increasingly ageing populations in many parts of the world.

"The findings are at a very early stage but they show the potential for helping people to live more comfortable and less painful lives when they reach 70 and 80 years of age and beyond."

Hutchinson-Gilford Progeria Syndrome "Progeria" or "HGPS" is a rare, fatal genetic condition characterized by an appearance of accelerated aging in children. Progeria has a reported incidence of about 1 in 4 - 8 million newborns from all over the world. It affects both sexes equally and all races. Although they are born looking healthy, children with Progeria begin to display many characteristics of accelerated aging at around 18-24 months of age.

Progeria signs include growth failure, loss of body fat and hair, aged-looking skin, stiffness of joints, hip dislocation, generalized atherosclerosis, cardiovascular (heart) disease and stroke. The children have a remarkably similar appearance, despite differing ethnic backgrounds. Children with Progeria die of atherosclerosis (heart disease) at an average age of thirteen years (with a range of about 8 – 21 years).

Dr. Leslie Gordon, Medical Director for The Progeria Research Foundation, said: "Dr. Hutchison's study has not only confirmed basic cellular defects in Progeria, but has also identified potential ways to improve those defects. This type of biological science is how progress towards treatments and a cure for children with Progeria will advance."

The research could also provide a model for the future for tailoring treatments and dosages of drugs to the individual and therefore improving patient health where drugs are administered.

The project was funded by the Association for Cancer Research, One North East and EU FP6.

Carl Stiansen | EurekAlert!
Further information:
http://www.durham.ac.uk

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>