Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell injections accelerate fracture healing

13.02.2009
Long bone fractures heal faster after injections of bone-building cells. Research published in the open access journal BMC Musculoskeletal Disorders has shown that osteoblast cells cultured from a patient's own bone marrow can be injected into the fracture area and can speed the healing process.

Dr Seok-Jung Kim from the Catholic University College of Medicine, Seoul, coordinated a multi-centre, randomized clinical study of the osteoblast treatment. He said, "The cultured osteoblast injection group showed fracture healing acceleration of statistical significance, and there were no specific patient complications when using this treatment. Cultured osteoblast injection should therefore be considered as a successful treatment option for long-bone fracture".

Between May 2006 and January 2008, 64 patients were included in the study. Of these, 31 were randomly allocated to receive the treatment and 33 were left to heal normally as a control group. There were no significant age, sex or body-shape differences between the two groups. According to Dr Kim, "There was significantly more bone growth in the experimental group, compared to the control group. Autologous cultured osteoblast transplant is a safe and effective method for accelerating the rate of fracture healing."

Dr Kim added, "Time has increasingly become the most important factor in clinical decision-making. While fractures generally will eventually heal, bone union can frequently be delayed to the extent that it requires bone transplantation. Not only does this cause psychological and physical pain to the individual patient, it's also not economically viable. Although bone transplant remains the most effective method of bone union, osteoblast injections provide an alternative which can be performed under local anesthesia with no requirement for surgery".

1. A multi-center, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast(OssronTM) injection to treat fractures
Seok-Jung Kim, Yong-Woon Shin, Kyu-Hyun Yang, Sang-Bum Kim, Moon-Jib Yoo, Suk-Ku Han, Soo-Ah Im, Yoo-Dong Won, Yerl-Bo Sung, Taek-Soo Jeon, Cheong-Ho Chang, Jae-Deog Jang, Sae-Bom Lee, Hyun-Jo Kim and Su-Young Lee

BMC Musculoskeletal Disorders (in press)

2. BMC Musculoskeletal Disorders is an open access journal publishing original peer-reviewed research articles in all aspects of the prevention, diagnosis and management of musculoskeletal and associated disorders, as well as related molecular genetics, pathophysiology, and epidemiology. BMC Musculoskeletal Disorders (ISSN 1471-2474) is indexed/tracked/covered by PubMed, MEDLINE, CAS, Scopus, EMBASE, Current Contents, Thomson Reuters (ISI) and Google Scholar.

3. BioMed Central (www.biomedcentral.com) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>