Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell injections accelerate fracture healing

13.02.2009
Long bone fractures heal faster after injections of bone-building cells. Research published in the open access journal BMC Musculoskeletal Disorders has shown that osteoblast cells cultured from a patient's own bone marrow can be injected into the fracture area and can speed the healing process.

Dr Seok-Jung Kim from the Catholic University College of Medicine, Seoul, coordinated a multi-centre, randomized clinical study of the osteoblast treatment. He said, "The cultured osteoblast injection group showed fracture healing acceleration of statistical significance, and there were no specific patient complications when using this treatment. Cultured osteoblast injection should therefore be considered as a successful treatment option for long-bone fracture".

Between May 2006 and January 2008, 64 patients were included in the study. Of these, 31 were randomly allocated to receive the treatment and 33 were left to heal normally as a control group. There were no significant age, sex or body-shape differences between the two groups. According to Dr Kim, "There was significantly more bone growth in the experimental group, compared to the control group. Autologous cultured osteoblast transplant is a safe and effective method for accelerating the rate of fracture healing."

Dr Kim added, "Time has increasingly become the most important factor in clinical decision-making. While fractures generally will eventually heal, bone union can frequently be delayed to the extent that it requires bone transplantation. Not only does this cause psychological and physical pain to the individual patient, it's also not economically viable. Although bone transplant remains the most effective method of bone union, osteoblast injections provide an alternative which can be performed under local anesthesia with no requirement for surgery".

1. A multi-center, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast(OssronTM) injection to treat fractures
Seok-Jung Kim, Yong-Woon Shin, Kyu-Hyun Yang, Sang-Bum Kim, Moon-Jib Yoo, Suk-Ku Han, Soo-Ah Im, Yoo-Dong Won, Yerl-Bo Sung, Taek-Soo Jeon, Cheong-Ho Chang, Jae-Deog Jang, Sae-Bom Lee, Hyun-Jo Kim and Su-Young Lee

BMC Musculoskeletal Disorders (in press)

2. BMC Musculoskeletal Disorders is an open access journal publishing original peer-reviewed research articles in all aspects of the prevention, diagnosis and management of musculoskeletal and associated disorders, as well as related molecular genetics, pathophysiology, and epidemiology. BMC Musculoskeletal Disorders (ISSN 1471-2474) is indexed/tracked/covered by PubMed, MEDLINE, CAS, Scopus, EMBASE, Current Contents, Thomson Reuters (ISI) and Google Scholar.

3. BioMed Central (www.biomedcentral.com) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>