Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Celery, artichokes contain flavonoids that kill human pancreatic cancer cells

16.08.2013
Celery, artichokes, and herbs, especially Mexican oregano, all contain apigenin and luteolin, flavonoids that kill human pancreatic cancer cells in the lab by inhibiting an important enzyme, according to two new University of Illinois studies.

"Apigenin alone induced cell death in two aggressive human pancreatic cancer cell lines. But we received the best results when we pre-treated cancer cells with apigenin for 24 hours, then applied the chemotherapeutic drug gemcitabine for 36 hours," said Elvira de Mejia, a U of I professor of food chemistry and food toxicology.

The trick seemed to be using the flavonoids as a pre-treatment instead of applying them and the chemotherapeutic drug simultaneously, said Jodee Johnson, a doctoral student in de Mejia's lab who has since graduated.

"Even though the topic is still controversial, our study indicated that taking antioxidant supplements on the same day as chemotherapeutic drugs may negate the effect of those drugs," she said.

"That happens because flavonoids can act as antioxidants. One of the ways that chemotherapeutic drugs kill cells is based on their pro-oxidant activity, meaning that flavonoids and chemotherapeutic drugs may compete with each other when they're introduced at the same time," she explained.

Pancreatic cancer is a very aggressive cancer, and there are few early symptoms, meaning that the disease is often not found before it has spread. Ultimately the goal is to develop a cure, but prolonging the lives of patients would be a significant development, Johnson added.

It is the fourth leading cause of cancer-related deaths, with a five-year survival rate of only 6 percent, she said.

The scientists found that apigenin inhibited an enzyme called glycogen synthase kinase-3â (GSK-3â), which led to a decrease in the production of anti-apoptotic genes in the pancreatic cancer cells. Apoptosis means that the cancer cell self-destructs because its DNA has been damaged.

In one of the cancer cell lines, the percentage of cells undergoing apoptosis went from 8.4 percent in cells that had not been treated with the flavonoid to 43.8 percent in cells that had been treated with a 50-micromolar dose. In this case, no chemotherapy drug had been added.

Treatment with the flavonoid also modified gene expression. "Certain genes associated with pro-inflammatory cytokines were highly upregulated," de Mejia said.

According to Johnson, the scientists' in vitro study in Molecular Nutrition and Food Research is the first to show that apigenin treatment can lead to an increase in interleukin 17s in pancreatic cells, showing its potential relevance in anti-pancreatic cancer activity.

Pancreatic cancer patients would probably not be able to eat enough flavonoid-rich foods to raise blood plasma levels of the flavonoid to an effective level. But scientists could design drugs that would achieve those concentrations, de Mejia said.

And prevention of this frightening disease is another story. "If you eat a lot of fruits and vegetables throughout your life, you'll have chronic exposure to these bioactive flavonoids, which would certainly help to reduce the risk of cancer," she noted.

Flavonoid apigenin modified gene expression associated with inflammation and cancer and induced apoptosis in human pancreatic cancer cells through inhibition of GSK-3â/NF-êB signaling cascade is available pre-publication online in Molecular Nutrition and Food Research at http://onlinelibrary.wiley.com/doi/10.1002/mnfr.201300307/pdf.

Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells in vitro is available pre-publication online in Food and Chemical Toxicology at http://ac.els-cdn.com/S0278691513004912/1-s2.0-S0278691513004912-main.pdf?_tid=c3b88f9a-05ce-11e3-9281-00000aab0f01&acdnat=1376587315_bee4241362cd03044f56c15dc7011e67.

The U of I's J.L. Johnson and E. Gonzalez de Mejia co-authored both studies, which were funded by USDA.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>