Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Celery, artichokes contain flavonoids that kill human pancreatic cancer cells

16.08.2013
Celery, artichokes, and herbs, especially Mexican oregano, all contain apigenin and luteolin, flavonoids that kill human pancreatic cancer cells in the lab by inhibiting an important enzyme, according to two new University of Illinois studies.

"Apigenin alone induced cell death in two aggressive human pancreatic cancer cell lines. But we received the best results when we pre-treated cancer cells with apigenin for 24 hours, then applied the chemotherapeutic drug gemcitabine for 36 hours," said Elvira de Mejia, a U of I professor of food chemistry and food toxicology.

The trick seemed to be using the flavonoids as a pre-treatment instead of applying them and the chemotherapeutic drug simultaneously, said Jodee Johnson, a doctoral student in de Mejia's lab who has since graduated.

"Even though the topic is still controversial, our study indicated that taking antioxidant supplements on the same day as chemotherapeutic drugs may negate the effect of those drugs," she said.

"That happens because flavonoids can act as antioxidants. One of the ways that chemotherapeutic drugs kill cells is based on their pro-oxidant activity, meaning that flavonoids and chemotherapeutic drugs may compete with each other when they're introduced at the same time," she explained.

Pancreatic cancer is a very aggressive cancer, and there are few early symptoms, meaning that the disease is often not found before it has spread. Ultimately the goal is to develop a cure, but prolonging the lives of patients would be a significant development, Johnson added.

It is the fourth leading cause of cancer-related deaths, with a five-year survival rate of only 6 percent, she said.

The scientists found that apigenin inhibited an enzyme called glycogen synthase kinase-3â (GSK-3â), which led to a decrease in the production of anti-apoptotic genes in the pancreatic cancer cells. Apoptosis means that the cancer cell self-destructs because its DNA has been damaged.

In one of the cancer cell lines, the percentage of cells undergoing apoptosis went from 8.4 percent in cells that had not been treated with the flavonoid to 43.8 percent in cells that had been treated with a 50-micromolar dose. In this case, no chemotherapy drug had been added.

Treatment with the flavonoid also modified gene expression. "Certain genes associated with pro-inflammatory cytokines were highly upregulated," de Mejia said.

According to Johnson, the scientists' in vitro study in Molecular Nutrition and Food Research is the first to show that apigenin treatment can lead to an increase in interleukin 17s in pancreatic cells, showing its potential relevance in anti-pancreatic cancer activity.

Pancreatic cancer patients would probably not be able to eat enough flavonoid-rich foods to raise blood plasma levels of the flavonoid to an effective level. But scientists could design drugs that would achieve those concentrations, de Mejia said.

And prevention of this frightening disease is another story. "If you eat a lot of fruits and vegetables throughout your life, you'll have chronic exposure to these bioactive flavonoids, which would certainly help to reduce the risk of cancer," she noted.

Flavonoid apigenin modified gene expression associated with inflammation and cancer and induced apoptosis in human pancreatic cancer cells through inhibition of GSK-3â/NF-êB signaling cascade is available pre-publication online in Molecular Nutrition and Food Research at http://onlinelibrary.wiley.com/doi/10.1002/mnfr.201300307/pdf.

Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells in vitro is available pre-publication online in Food and Chemical Toxicology at http://ac.els-cdn.com/S0278691513004912/1-s2.0-S0278691513004912-main.pdf?_tid=c3b88f9a-05ce-11e3-9281-00000aab0f01&acdnat=1376587315_bee4241362cd03044f56c15dc7011e67.

The U of I's J.L. Johnson and E. Gonzalez de Mejia co-authored both studies, which were funded by USDA.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>