Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cedars-Sinai study sheds light on bone marrow stem cell therapy for pancreatic recovery

04.10.2012
Researchers at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute have found that a blood vessel-building gene boosts the ability of human bone marrow stem cells to sustain pancreatic recovery in a laboratory mouse model of insulin-dependent diabetes.

The findings, published in a PLoS ONE article of the Public Library of Science, offer new insights on mechanisms involved in regeneration of insulin-producing cells and provide new evidence that a diabetic’s own bone marrow one day may be a source of treatment.

Scientists began studying bone marrow-derived stem cells for pancreatic regeneration a decade ago. Recent studies involving several pancreas-related genes and delivery methods – transplantation into the organ or injection into the blood – have shown that bone marrow stem cell therapy could reverse or improve diabetes in some laboratory mice. But little has been known about how stem cells affect beta cells – pancreas cells that produce insulin – or how scientists could promote sustained beta cell renewal and insulin production.

When the Cedars-Sinai researchers modified bone marrow stem cells to express a certain gene (vascular endothelial growth factor, or VEGF), pancreatic recovery was sustained as mouse pancreases were able to generate new beta cells. The VEGF-modified stem cells promoted growth of needed blood vessels and supported activation of genes involved in insulin production. Bone marrow stem cells modified with a different gene, PDX1, which is important in the development and maintenance of beta cells, resulted in temporary but not sustained beta cell recovery.

“Our study is the first to show that VEGF contributes to revascularization and recovery after pancreatic injury. It demonstrates the possible clinical benefits of using bone marrow-derived stem cells, modified to express that gene, for the treatment of insulin-dependent diabetes,” said John S. Yu, MD, professor and vice chair of the Department of Neurosurgery at Cedars-Sinai, senior author of the journal article.

Diabetes was reversed in five of nine mice treated with the injection of VEGF-modified cells, and near-normal blood sugar levels were maintained through the remainder of the six-week study period. The other four mice survived and gained weight, suggesting treatment was beneficial even when it did not prompt complete reversal. Lab studies later confirmed that genetically-modified cells survived and grew in the pancreas and supported the repopulation of blood vessels and beta cells.

Anna Milanesi, MD, PhD, working in Yu’s lab as an endocrinology fellow, is the article’s first author. The researchers cautioned that although this and other related studies help scientists gain a better understanding of the processes and pathways involved in pancreatic regeneration, more research is needed before human clinical trials can begin.

Insulin-dependent diabetes occurs when beta cells of the pancreas fail to produce insulin, a hormone that regulates sugar in the blood. Patients must take insulin injections or consider transplantation of a whole pancreas or parts of the pancreas that make insulin, but transplantation carries the risk of cell rejection.

PLoS ONE: “Beta-cell Regeneration Mediated by Human Bone Marrow Mesenchymal Stem Cells.”

VideoLink ReadyCam camera available, capable of instantly transmitting broadcast quality HD video directly to any network around the word.

Sandy Van | Cedars-Sinai News
Further information:
http://www.cedars-sinai.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>