Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalyst mystery unlocked

20.08.2008
New model brings USC chemists closer to 'holy grail' of catalyst design

Different keys are not supposed to fit the same lock, but in biological systems multiple versions of a catalyst all make a reaction go, according to a new study that explains the phenomenon.

Scheduled for online publication in PNAS Early Edition sometime after Aug. 18, the study challenges entrenched ideas about the workings of catalysts.

The study also suggests a method for designing new catalysts.

Catalysts are molecules that speed up chemical reactions without participating in them. Thousands of industrial and biological processes rely on catalysts. In the human body, enzymes catalyze almost every reaction.

"The Holy Grail of enzyme catalysis and the ultimate manifestation of understanding of this process is the ability to design enzymes," said senior author Arieh Warshel, professor of chemistry at USC College.

He listed drug production, environmental chemistry and bioremediation as areas that could be revolutionized by custom-designed enzymes.

In the PNAS study, Warshel described a computational model that both explains a key aspect of catalyst function and suggests a design strategy.

Since the early days of catalyst chemistry, scientists had championed the "lock and key" model, which held that a catalyst worked by exquisitely surrounding and matching the reacting system (the substrate).

Warshel's group has published several papers in support of an alternate theory based on electrical attraction. According to the group, a perfect physical fit between catalyst and substrate is not necessary.

"What really fits is the electrostatic interaction between the enzyme active site to the substrate charges at the so-called transition state, where the bonds are halfway to being broken," Warshel said.

If Warshel is correct, catalyst and substrate would be less like lock and key, and more like two magnets: As long the opposite poles could get close to each other, they would bind.

Warshel's model reproduced new experimental data showing that a natural enzyme and its engineered, structurally different counterpart both have the same catalytic power, despite being very different from each other.

The engineered enzyme, made by co-author Donald Hilvert of ETH in Zurich, Switzerland, displays less distinct folding than the natural enzyme. It also changes shape very rapidly.

Warshel's model shows that the engineered enzyme takes the shape of many keys, with all fitting electrostatically in the same lock. This should offer a new option for enzyme design.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: PNAS catalyst design enzyme enzymes catalyze holy grail human body

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

A Keen Sense for Molecules

23.02.2018 | Physics and Astronomy

“Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen

23.02.2018 | Trade Fair News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>