Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalyst mystery unlocked

20.08.2008
New model brings USC chemists closer to 'holy grail' of catalyst design

Different keys are not supposed to fit the same lock, but in biological systems multiple versions of a catalyst all make a reaction go, according to a new study that explains the phenomenon.

Scheduled for online publication in PNAS Early Edition sometime after Aug. 18, the study challenges entrenched ideas about the workings of catalysts.

The study also suggests a method for designing new catalysts.

Catalysts are molecules that speed up chemical reactions without participating in them. Thousands of industrial and biological processes rely on catalysts. In the human body, enzymes catalyze almost every reaction.

"The Holy Grail of enzyme catalysis and the ultimate manifestation of understanding of this process is the ability to design enzymes," said senior author Arieh Warshel, professor of chemistry at USC College.

He listed drug production, environmental chemistry and bioremediation as areas that could be revolutionized by custom-designed enzymes.

In the PNAS study, Warshel described a computational model that both explains a key aspect of catalyst function and suggests a design strategy.

Since the early days of catalyst chemistry, scientists had championed the "lock and key" model, which held that a catalyst worked by exquisitely surrounding and matching the reacting system (the substrate).

Warshel's group has published several papers in support of an alternate theory based on electrical attraction. According to the group, a perfect physical fit between catalyst and substrate is not necessary.

"What really fits is the electrostatic interaction between the enzyme active site to the substrate charges at the so-called transition state, where the bonds are halfway to being broken," Warshel said.

If Warshel is correct, catalyst and substrate would be less like lock and key, and more like two magnets: As long the opposite poles could get close to each other, they would bind.

Warshel's model reproduced new experimental data showing that a natural enzyme and its engineered, structurally different counterpart both have the same catalytic power, despite being very different from each other.

The engineered enzyme, made by co-author Donald Hilvert of ETH in Zurich, Switzerland, displays less distinct folding than the natural enzyme. It also changes shape very rapidly.

Warshel's model shows that the engineered enzyme takes the shape of many keys, with all fitting electrostatically in the same lock. This should offer a new option for enzyme design.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: PNAS catalyst design enzyme enzymes catalyze holy grail human body

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>