Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carrots in Space: Fresh Food for Astronauts on Its Way

23.10.2009
New research indicates that astronauts will soon have their own gardens aboard the International Space Station with the ability to grow vitamin A-rich carrots in space, according to a study in the Journal of Food Science, published by the Institute of Food Technologists.

Researchers from Tuskegee University in Alabama conducted a study targeted at finding a way to incorporate natural and fresh antioxidants into the diets of astronauts while traveling in space. They grew 18 different varieties of hydroponic carrots using two different methods of nutrient delivery. Growing carrots hydroponically cultivates the vegetables by placing the roots in liquid nutrient solutions rather than in soil.

Among all foods, carrots have the highest carotenoid content. They also contain a natural pigment known for provitamin A and have been associated with protection against cancer, cardiovascular diseases, cataracts and macular degeneration as well as enhancing the immune response. Astronauts can be exposed to elevated levels of radiation, which might put them at risk for some types of cancer. Researchers believe that the addition of unprocessed carrots to their diets may help reduce the negative effects of radiation and cancer development.

The hydroponically grown carrots were issued nutrients in two different methods. One method is the nutrient film technique (NFT), in which the roots were exposed to a nutrient solution within a plastic film trough. The second method is the microporous tube membrane system (MTMS), in which nutrient tubes were embedded into Turface—a material similar to crushed clay— where the carrots were planted.

All carrots were harvested 70 days after planting. They were tested for moisture, fat and carotene content as well as color and texture. Consumer testing also occurred to test the acceptability of the hydroponic carrots. This group evaluated color, crunchiness, sweetness, fibrousness, blandness and overall preference of the 18 different carrot types grown using NFT and MTMS.

The study concluded that hydroponic carrots grown using the MTMS method were most appealing to consumers due to their color and more carrot-like appearance. Moisture contents were similar among all hydroponic carrots as was the carotene content. Lead researcher A.C. Bovell-Benjamin stated, “The Nevis-F carrot cultivar grown using the NFT method had the highest carotenoid content and acceptability among consumers, and therefore, it will be the most likely choice for inclusion in NASA’s food system.”

To receive a copy of the study, please contact Jeannie Houchins at jhouchins@ift.org.

About IFT
The Institute of Food Technologists (IFT) exists to advance the science of food. Our long-range vision is to ensure a safe and abundant food supply contributing to healthier people everywhere. Founded in 1939, IFT is a nonprofit scientific society with 20,000 individual members working in food science, food technology, and related professions in industry, academia, and government. IFT champions the use of sound science across the food value chain through knowledge sharing, education, and advocacy, encouraging the exchange of information, providing both formal and informal educational opportunities, and furthering the advancement of the profession. IFT has offices in Chicago, Illinois, and Washington, D.C. For additional information, please visit ift.org.

© 2009 Institute of Food Technologists

Jeannie Houchins | Newswise Science News
Further information:
http://www.ift.org

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>