Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon scientists discover first evidence of brain rewiring in children

10.12.2009
Study shows reading remediation improves children's reading skills and positively alters brain tissue

Carnegie Mellon University scientists Timothy Keller and Marcel Just have uncovered the first evidence that intensive instruction to improve reading skills in young children causes the brain to physically rewire itself, creating new white matter that improves communication within the brain.

As the researchers report today in the journal Neuron, brain imaging of children between the ages of 8 and 10 showed that the quality of white matter — the brain tissue that carries signals between areas of grey matter, where information is processed — improved substantially after the children received 100 hours of remedial training. After the training, imaging indicated that the capability of the white matter to transmit signals efficiently had increased, and testing showed the children could read better.

"Showing that it's possible to rewire a brain's white matter has important implications for treating reading disabilities and other developmental disorders, including autism," said Just, the D.O. Hebb Professor of Psychology and director of Carnegie Mellon's Center for Cognitive Brain Imaging (CCBI).

Dr. Thomas R. Insel, director of the National Institute of Mental Health, agreed. "We have known that behavioral training can enhance brain function. The exciting breakthrough here is detecting changes in brain connectivity with behavioral treatment. This finding with reading deficits suggests an exciting new approach to be tested in the treatment of mental disorders, which increasingly appear to be due to problems in specific brain circuits," Insel said.

Keller and Just's study was designed to discover what physically changes in the brains of poor readers who make the transition to good reading. They scanned the brains of 72 children before and after they went through a six-month remedial instruction program. Using diffusion tensor imaging (DTI), a new brain imaging technique that tracks water movement in order to reveal the microscopic structure of white matter, Keller and Just found a brain change involving the white matter cabling that wires different parts of the brain together.

"Water molecules that are inside nerve fibers tend to move or diffuse parallel to the nerve fibers," explained Keller, a CCBI research scientist and author of the first developmental study of compromised white matter in autism. "To track the nerve fibers, the scanner senses areas in which many water molecules are moving along in the same direction and produces a road-map of the brain's wiring."

Previous DTI studies had shown that both children and adults with reading difficulty displayed areas of compromised white matter. This new study shows that 100 hours of intensive reading instruction improved children's reading skills and also increased the quality of the compromised white matter to normal levels. More precisely, the DTI imaging illustrated that the consistency of water diffusion had increased in this region, indicating an improvement in the integrity of the white matter tracts.

"The improved integrity essentially increases communication bandwidth between the two brain areas that the white matter connects, by a factor of 10," Just said. "This opens a new era of being able to see the brain wiring change when an effective instructional treatment is applied. It lets us see educational interventions from a new perspective."

Out of the 72 children, 47 were poor readers and 25 were reading at a normal level. The good readers and a group of 12 poor readers did not receive the remedial instruction, and their brain scans did not show any changes. "The lack of change in the control groups demonstrates that the change in the treated group cannot be attributed to naturally occurring maturation during the study," Keller said.

Keller and Just also found that the amount of change in diffusion among the treated group was directly related to the amount of increase in phonological decoding ability. The children who showed the most white matter change also showed the most improvement in reading ability, confirming the link between the brain tissue alteration and reading progress.

Additional analyses indicated that the change resulted from a decrease in the movement of water perpendicular to the main axes of the underlying white matter fibers, a finding consistent with increased myelin content in the region. Although the authors caution that further research will be necessary to uncover the precise mechanism for the change in white matter, some previous findings indicate a role for electrical activity along axons in promoting the formation of myelin around them, providing a plausible physiological basis for intensive practice and instruction increasing the efficiency of communication among brain areas.

"We're excited about these results," Just said. "The indication that behavioral intervention can improve both cognitive performance and the microstructure of white matter tracts is a breakthrough for treating and understanding development problems."

The research was funded by grants from the Richard King Mellon Foundation and the National Institute of Mental Health.

Shilo Raube | EurekAlert!
Further information:
http://www.cmu.edu
http://www.ccbi.cmu.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>