Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon sequestration in soil: The potential underfoot

19.10.2015

Declining greenhouse gas emissions from European cropland could compensate for up to 7% of annual agricultural emissions from the region, according to a new study analyzing the carbon uptake potential of soil. However at global scale, indirect effects could offset significant parts of these emission savings.

A new study published in the journal Global Environmental Change projects that carbon sequestration in European cropland could store between 9 and 38 megatons of carbon dioxide (MtCO2) per year in the soil, or as much as 7% of the annual greenhouse gas emissions from agriculture in the European Union, at a price of carbon of 100 $/tCO2.


©tuk69tuk | Dollar Photo Club

“However, if strict emission reduction targets are only adopted inside Europe, efforts within the EU to reduce emissions could lead to increased emissions in other parts of the world, which could significantly compromise emission reductions at global level” says IIASA researcher Stefan Frank, who led the study.
In order to reach the EU goals on climate change, mitigation measures will be needed across many sectors. This research focuses on the agriculture piece of that puzzle.

The world’s soils contain the third largest stock of carbon, after oceans and the geological pool, which includes rocks and fossil fuels. Any disturbance of soils, for example through inappropriate management or land use change could therefore release significant amounts of carbon to the atmosphere. Good management practices, on the other hand, can significantly reduce emissions.

The study shows that a carbon tax only within Europe could cause some part of European agricultural production to be reallocated outside Europe. Consequently, emissions outside Europe would increase, thereby partly offsetting the emission reductions inside Europe, a problem known as emissions leakage.

“In the context of the upcoming climate summit in Paris which will aim to achieve a legally binding and universal agreement on climate, this study provides a piece in the mosaic of information the negotiators need to achieve a feasible but still effective deal in line with other development objectives,” says IIASA researcher Petr Havlik, who leads the GLOBIOM modeling team.

This study is a collaborative effort between IIASA, BOKU and the University of Hamburg. In particular BOKU researcher Erwin Schmid provided detailed information about carbon sequestration potential in EU cropland by means of the Environmental Policy Integrated Model (EPIC), which is used to understand crop management systems and their effects on the environment.

IIASA in collaboration with University of Hamburg (Uwe Schneider) then implemented this information into the Global Biosphere Management Model (GLOBIOM), which is used to assess impacts on land use, trade, and emissions on regional and global scales and carried out the economic assessment.

Starting from a baseline scenario for future population and economic growth, the researchers then examined different scenarios in which the carbon price was varied inside Europe thereby mimicking emission reduction targets for the agricultural sector.

Given the remaining uncertainties, the small mitigation potential at carbon prices below 100 $/tCO2 and the potential leakage effects, the researchers conclude that carbon sequestration on European cropland will probably not contribute significantly to climate change mitigation and should therefore be accompanied by additional mitigation efforts. As the latest IPCC AR5 report points out, a substantial decrease in greenhouse gas emissions by mid-century would be needed to keep the 2 degree target within reach.

Reference
Frank S, Schmid E, Havlik P, Schneider UA, Bottcher H, Balkovic J, Obersteiner M, (2015). Global Environmental Change 35, 269-278. Doi:10.1016/j.gloenvcha.2015.08.004

About IIASA:
The International Institute for Applied Systems Analysis (IIASA) is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policy makers to shape the future of our changing world. IIASA is independent and funded by scientific institutions in Africa, the Americas, Asia, Oceania, and Europe. www.iiasa.ac.at 

MSc Katherine Leitzell | idw - Informationsdienst Wissenschaft

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>