Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon monoxide reverses diabetic gastric problem in mice

02.06.2009
Mayo Clinic researchers have shown that very low doses of inhaled carbon monoxide in diabetic mice reverses the condition known as gastroparesis or delayed stomach emptying, a common and painful complication for many diabetic patients. The findings will be presented on June 1 at Digestive Disease Week in Chicago.

"This is a significant finding, as it shows that loss of the enzyme that makes carbon monoxide is the actor in this process and that it provides us with a clear approach toward a possible new therapy for this condition," says Gianrico Farrugia, M.D., Mayo Clinic gastroenterologist and lead investigator on the study.

Gastroparesis occurs when the stomach retains undigested food for long periods. When that food eventually passes into the small intestine, insulin is released. Because the passage of food out of the stomach becomes unpredictable, maintaining a proper blood glucose level -- critical for controlling diabetes -- also becomes difficult. Gastroparesis can cause pain, nausea, vomiting, stomach spasms and weight loss due to inability to ingest enough nutrients. In some patients with diabetes, the abnormally high blood glucose levels cause chemical changes in nerves and in pacemaker cells, which regulate digestive processes in the gut, and damage blood vessels that carry oxygen and nutrients to cells.

Previous studies by the Mayo team showed that gastroparesis is associated with the loss of up-regulation of heme oxygenase-1 (HO1) and an increase in oxidative stress. It also causes a loss of Kit, a marker for the pacemakers cells called interstitial cells of Cajal, which regulate muscle contraction in the digestive tract. When the team induced HO1 production, signs of oxidative stress dropped and gastroparesis was restored along with Kit.

The metabolite that normalized gastric functioning was not known. Suspecting carbon monoxide, the Mayo investigators studied ten mice with diabetes that had exhibited delayed gastric emptying. Five mice were given carbon monoxide by inhalation (100 parts per million) for six hours daily. Within three weeks gastroparesis reversed, oxidative stress decreased and Kit expression increased, all without increasing HO1 expression.

The study was funded by the National Institutes of Health and Mayo Clinic. Other members of the Mayo team were Purna Kashyap, M.B.B.S.; Kyoung Moo Choi, Ph.D.; Matthew Lurken; Nirjhar Dutta; Joseph Szurszewski, Ph.D.; and Simon Gibbons, Ph.D.

About Mayo Clinic

Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,300 physicians, scientists and researchers and 46,000 allied health staff work at Mayo Clinic, which has sites in Rochester, Minn., Jacksonville, Fla., and Scottsdale/Phoenix, Ariz. Collectively, the three locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories. For more on Mayo Clinic research, go to www.mayo.edu.

Links embedded in this release:

Gianrico Farrugia, M.D. = http://mayoresearch.mayo.edu/mayo/research/staff/farrugia_g.cfm

Amy Tieder | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>