Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Carbon monoxide reverses diabetic gastric problem in mice

Mayo Clinic researchers have shown that very low doses of inhaled carbon monoxide in diabetic mice reverses the condition known as gastroparesis or delayed stomach emptying, a common and painful complication for many diabetic patients. The findings will be presented on June 1 at Digestive Disease Week in Chicago.

"This is a significant finding, as it shows that loss of the enzyme that makes carbon monoxide is the actor in this process and that it provides us with a clear approach toward a possible new therapy for this condition," says Gianrico Farrugia, M.D., Mayo Clinic gastroenterologist and lead investigator on the study.

Gastroparesis occurs when the stomach retains undigested food for long periods. When that food eventually passes into the small intestine, insulin is released. Because the passage of food out of the stomach becomes unpredictable, maintaining a proper blood glucose level -- critical for controlling diabetes -- also becomes difficult. Gastroparesis can cause pain, nausea, vomiting, stomach spasms and weight loss due to inability to ingest enough nutrients. In some patients with diabetes, the abnormally high blood glucose levels cause chemical changes in nerves and in pacemaker cells, which regulate digestive processes in the gut, and damage blood vessels that carry oxygen and nutrients to cells.

Previous studies by the Mayo team showed that gastroparesis is associated with the loss of up-regulation of heme oxygenase-1 (HO1) and an increase in oxidative stress. It also causes a loss of Kit, a marker for the pacemakers cells called interstitial cells of Cajal, which regulate muscle contraction in the digestive tract. When the team induced HO1 production, signs of oxidative stress dropped and gastroparesis was restored along with Kit.

The metabolite that normalized gastric functioning was not known. Suspecting carbon monoxide, the Mayo investigators studied ten mice with diabetes that had exhibited delayed gastric emptying. Five mice were given carbon monoxide by inhalation (100 parts per million) for six hours daily. Within three weeks gastroparesis reversed, oxidative stress decreased and Kit expression increased, all without increasing HO1 expression.

The study was funded by the National Institutes of Health and Mayo Clinic. Other members of the Mayo team were Purna Kashyap, M.B.B.S.; Kyoung Moo Choi, Ph.D.; Matthew Lurken; Nirjhar Dutta; Joseph Szurszewski, Ph.D.; and Simon Gibbons, Ph.D.

About Mayo Clinic

Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,300 physicians, scientists and researchers and 46,000 allied health staff work at Mayo Clinic, which has sites in Rochester, Minn., Jacksonville, Fla., and Scottsdale/Phoenix, Ariz. Collectively, the three locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to ( is available as a resource for your health stories. For more on Mayo Clinic research, go to

Links embedded in this release:

Gianrico Farrugia, M.D. =

Amy Tieder | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>