Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon Monoxide Exposure Can Be Reduced During Routine Anesthesia in Kids

30.04.2010
Anesthesiologist identifies two changes to standard of care to protect developing brains

Doctors at Children’s National Medical Center have found that carbon monoxide levels in the blood of young children increase during routine general anesthesia. Anesthesiologists have found for the first time that, under certain circumstances, infants and children may be exposed to carbon monoxide during routine anesthesia resulting in a rise in the carbon monoxide levels in the child’s blood.

Because carbon monoxide can be generated as a byproduct of anesthesia, anesthesiologists world-wide use specific precautions to prevent and limit its production, according to Richard J. Levy, MD, Chief of Cardiac Anesthesiology, at Children’s National. Dr. Levy’s team identified the conditions in which carbon monoxide may be inhaled during anesthesia:

The first study demonstrated that carbon monoxide detected in the breathing circuit correlated with the increase in blood levels in children 2 years and older. The study included 15 patients between 4 months and 8 years.
The second study identified that the patient’s own exhaled carbon monoxide may be “re-breathed” during low-flow anesthesia – the current standard of care – where fresh gas flows more slowly into the circuit, rather than rapidly.

“The main goal is to provide the safest environment for young patients who require surgery,” said Dr. Levy. “We have identified tangible ways to reduce the risk of carbon monoxide exposure, and our hope is that these changes will be implemented internationally.”

Much remains unknown about the effects of low-dose carbon monoxide exposure on the developing brain. Several recent studies have suggested there may be a link to hearing impairments. Though there is more research to be done to determine these impacts, Dr. Levy recommends two immediate changes that will eliminate the risk of carbon monoxide exposure in children:

In the anesthesia machine, use carbon dioxide absorbents that lack strong metal alkali and do not degrade inhaled anesthetics (avoids CO production risk)
Avoid of low-flow anesthesia (avoids CO re-breathing risk)
Following Dr. Levy’s study findings, Children’s National switched to the recommended absorbent to minimize the risk to patients. Although the sample size is small, the results are compelling and Dr. Levy believes changes should be implemented.

Dr. Levy’s research has been named the top study out of 600 at the International Anesthesia Research Society 2010 meeting, and won the John J. Downes Research Award for best abstract at the upcoming Society of Pediatric Anesthesia/American Academy of Pediatrics 2010 Annual meeting.

Children’s National Medical Center, located in Washington, DC, is a leader in the development of innovative new treatments for childhood illness and injury. Children’s has been serving the nation’s children for more than 135 years. Children’s National is consistently ranked among the best pediatric hospitals by U.S.News & World Report and the Leapfrog Group. For more information, visit www.ChildrensNational.org. Children’s Research Institute, the academic arm of Children’s National Medical Center, encompasses the translational, clinical, and community research efforts of the institution. Learn more about Children’s Research Institute at www.ChildrensNational.org/Research.

Emily Dammeyer | EurekAlert!
Further information:
http://www.cnmc.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>