Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon Monoxide Exposure Can Be Reduced During Routine Anesthesia in Kids

30.04.2010
Anesthesiologist identifies two changes to standard of care to protect developing brains

Doctors at Children’s National Medical Center have found that carbon monoxide levels in the blood of young children increase during routine general anesthesia. Anesthesiologists have found for the first time that, under certain circumstances, infants and children may be exposed to carbon monoxide during routine anesthesia resulting in a rise in the carbon monoxide levels in the child’s blood.

Because carbon monoxide can be generated as a byproduct of anesthesia, anesthesiologists world-wide use specific precautions to prevent and limit its production, according to Richard J. Levy, MD, Chief of Cardiac Anesthesiology, at Children’s National. Dr. Levy’s team identified the conditions in which carbon monoxide may be inhaled during anesthesia:

The first study demonstrated that carbon monoxide detected in the breathing circuit correlated with the increase in blood levels in children 2 years and older. The study included 15 patients between 4 months and 8 years.
The second study identified that the patient’s own exhaled carbon monoxide may be “re-breathed” during low-flow anesthesia – the current standard of care – where fresh gas flows more slowly into the circuit, rather than rapidly.

“The main goal is to provide the safest environment for young patients who require surgery,” said Dr. Levy. “We have identified tangible ways to reduce the risk of carbon monoxide exposure, and our hope is that these changes will be implemented internationally.”

Much remains unknown about the effects of low-dose carbon monoxide exposure on the developing brain. Several recent studies have suggested there may be a link to hearing impairments. Though there is more research to be done to determine these impacts, Dr. Levy recommends two immediate changes that will eliminate the risk of carbon monoxide exposure in children:

In the anesthesia machine, use carbon dioxide absorbents that lack strong metal alkali and do not degrade inhaled anesthetics (avoids CO production risk)
Avoid of low-flow anesthesia (avoids CO re-breathing risk)
Following Dr. Levy’s study findings, Children’s National switched to the recommended absorbent to minimize the risk to patients. Although the sample size is small, the results are compelling and Dr. Levy believes changes should be implemented.

Dr. Levy’s research has been named the top study out of 600 at the International Anesthesia Research Society 2010 meeting, and won the John J. Downes Research Award for best abstract at the upcoming Society of Pediatric Anesthesia/American Academy of Pediatrics 2010 Annual meeting.

Children’s National Medical Center, located in Washington, DC, is a leader in the development of innovative new treatments for childhood illness and injury. Children’s has been serving the nation’s children for more than 135 years. Children’s National is consistently ranked among the best pediatric hospitals by U.S.News & World Report and the Leapfrog Group. For more information, visit www.ChildrensNational.org. Children’s Research Institute, the academic arm of Children’s National Medical Center, encompasses the translational, clinical, and community research efforts of the institution. Learn more about Children’s Research Institute at www.ChildrensNational.org/Research.

Emily Dammeyer | EurekAlert!
Further information:
http://www.cnmc.org

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>