Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capture and Handling May Have Long-term Effects on Bears

22.08.2008
A University of Saskatchewan-led study published this week in the Journal of Mammalogy suggests capture and handling of animals in their natural habitats can affect study animals for weeks or more, rather than for a few days as previously thought.

“We hope this study will increase awareness among researchers and help raise the bar on how we use wild animals in research,” said Marc Cattet, a research associate and adjunct professor with the Western College of Veterinary Medicine.

The retrospective study led by Cattet compiled data from two independent research projects to assess the long-term effects of capture and handling of bears in two geographically distinct areas—grizzly bears in Western Alberta and American black bears in the Pisgah Bear Sanctuary of North Carolina.

“While wildlife researchers have made some great strides in addressing animal welfare concerns by using minimally obtrusive capture and handling techniques, we found that some commonly used procedures still have potential to cause injury, change normal behavior, or more generally affect health in a negative manner,” said Cattet.

The study of a total of 340 black and grizzly bears found that blood analysis results from six of every 10 captured bears showed abnormally high values for muscle enzymes, indicating muscle injury which could be caused by the stress and extreme exertion of bears struggling to escape capture.

Injury was particularly evident in bears captured by leghold snare, a technique widely regarded as an acceptable method of capture for bears and other large carnivores. Enyzmes were also high in one in five grizzly bears darted from helicopter and in one in five grizzly or black bears captured by culvert trap.

The team also found that regardless of the capture method used, bears moved less through their territory after capture, with effects lasting three to six weeks on average after capture.

“This finding warrants more detailed investigation of specific and cumulative effects of other stressors that bears may be exposed to during and after capture, for example, sample collection, marking, and carrying radiotransmitters,” Cattet said.

The team also found that bears captured multiple times tended to lose body fat or gain fat at less than normal rates. “This finding is particularly important because as body condition fades, so too does an animal’s potential for growth, reproduction, and survival,” he said.

Cattet says these findings likely also apply to other wild animals commonly studied through capture and release.

“Not only do researchers have a role to play, but so do government wildlife agencies and funding agencies in supporting research to improve capture procedures and validate alternative techniques to capture,” he said.

Also, government wildlife agencies and groups such as the Canadian Council on Animal Care will need to consider revising guidelines and standard operating procedures followed by animal care committees in granting approvals for field research procedures, he said.

Other members of the research team included B.C. statistician John Boulanger, Foothills Research Institute project manager Gordon Stenhouse, North Carolina State University zoologist Roger Powell, and Powell’s former graduate student Melissa Reynolds-Hogland.

For more information, contact:
Marc Cattet
U of S Professional Research Associate and Adjunct Professor
Western College of Veterinary Medicine
(306) 966-2162

Kathryn Warden | Newswise Science News
Further information:
http://www.usask.ca/
http://www.allenpress.com/pdf/mamm-89-04-03_973_990.pdf

Further reports about: black bears grizzly bears muscle enzymes muscle injury

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>