Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capture and Handling May Have Long-term Effects on Bears

22.08.2008
A University of Saskatchewan-led study published this week in the Journal of Mammalogy suggests capture and handling of animals in their natural habitats can affect study animals for weeks or more, rather than for a few days as previously thought.

“We hope this study will increase awareness among researchers and help raise the bar on how we use wild animals in research,” said Marc Cattet, a research associate and adjunct professor with the Western College of Veterinary Medicine.

The retrospective study led by Cattet compiled data from two independent research projects to assess the long-term effects of capture and handling of bears in two geographically distinct areas—grizzly bears in Western Alberta and American black bears in the Pisgah Bear Sanctuary of North Carolina.

“While wildlife researchers have made some great strides in addressing animal welfare concerns by using minimally obtrusive capture and handling techniques, we found that some commonly used procedures still have potential to cause injury, change normal behavior, or more generally affect health in a negative manner,” said Cattet.

The study of a total of 340 black and grizzly bears found that blood analysis results from six of every 10 captured bears showed abnormally high values for muscle enzymes, indicating muscle injury which could be caused by the stress and extreme exertion of bears struggling to escape capture.

Injury was particularly evident in bears captured by leghold snare, a technique widely regarded as an acceptable method of capture for bears and other large carnivores. Enyzmes were also high in one in five grizzly bears darted from helicopter and in one in five grizzly or black bears captured by culvert trap.

The team also found that regardless of the capture method used, bears moved less through their territory after capture, with effects lasting three to six weeks on average after capture.

“This finding warrants more detailed investigation of specific and cumulative effects of other stressors that bears may be exposed to during and after capture, for example, sample collection, marking, and carrying radiotransmitters,” Cattet said.

The team also found that bears captured multiple times tended to lose body fat or gain fat at less than normal rates. “This finding is particularly important because as body condition fades, so too does an animal’s potential for growth, reproduction, and survival,” he said.

Cattet says these findings likely also apply to other wild animals commonly studied through capture and release.

“Not only do researchers have a role to play, but so do government wildlife agencies and funding agencies in supporting research to improve capture procedures and validate alternative techniques to capture,” he said.

Also, government wildlife agencies and groups such as the Canadian Council on Animal Care will need to consider revising guidelines and standard operating procedures followed by animal care committees in granting approvals for field research procedures, he said.

Other members of the research team included B.C. statistician John Boulanger, Foothills Research Institute project manager Gordon Stenhouse, North Carolina State University zoologist Roger Powell, and Powell’s former graduate student Melissa Reynolds-Hogland.

For more information, contact:
Marc Cattet
U of S Professional Research Associate and Adjunct Professor
Western College of Veterinary Medicine
(306) 966-2162

Kathryn Warden | Newswise Science News
Further information:
http://www.usask.ca/
http://www.allenpress.com/pdf/mamm-89-04-03_973_990.pdf

Further reports about: black bears grizzly bears muscle enzymes muscle injury

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>