Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Capture and Handling May Have Long-term Effects on Bears

A University of Saskatchewan-led study published this week in the Journal of Mammalogy suggests capture and handling of animals in their natural habitats can affect study animals for weeks or more, rather than for a few days as previously thought.

“We hope this study will increase awareness among researchers and help raise the bar on how we use wild animals in research,” said Marc Cattet, a research associate and adjunct professor with the Western College of Veterinary Medicine.

The retrospective study led by Cattet compiled data from two independent research projects to assess the long-term effects of capture and handling of bears in two geographically distinct areas—grizzly bears in Western Alberta and American black bears in the Pisgah Bear Sanctuary of North Carolina.

“While wildlife researchers have made some great strides in addressing animal welfare concerns by using minimally obtrusive capture and handling techniques, we found that some commonly used procedures still have potential to cause injury, change normal behavior, or more generally affect health in a negative manner,” said Cattet.

The study of a total of 340 black and grizzly bears found that blood analysis results from six of every 10 captured bears showed abnormally high values for muscle enzymes, indicating muscle injury which could be caused by the stress and extreme exertion of bears struggling to escape capture.

Injury was particularly evident in bears captured by leghold snare, a technique widely regarded as an acceptable method of capture for bears and other large carnivores. Enyzmes were also high in one in five grizzly bears darted from helicopter and in one in five grizzly or black bears captured by culvert trap.

The team also found that regardless of the capture method used, bears moved less through their territory after capture, with effects lasting three to six weeks on average after capture.

“This finding warrants more detailed investigation of specific and cumulative effects of other stressors that bears may be exposed to during and after capture, for example, sample collection, marking, and carrying radiotransmitters,” Cattet said.

The team also found that bears captured multiple times tended to lose body fat or gain fat at less than normal rates. “This finding is particularly important because as body condition fades, so too does an animal’s potential for growth, reproduction, and survival,” he said.

Cattet says these findings likely also apply to other wild animals commonly studied through capture and release.

“Not only do researchers have a role to play, but so do government wildlife agencies and funding agencies in supporting research to improve capture procedures and validate alternative techniques to capture,” he said.

Also, government wildlife agencies and groups such as the Canadian Council on Animal Care will need to consider revising guidelines and standard operating procedures followed by animal care committees in granting approvals for field research procedures, he said.

Other members of the research team included B.C. statistician John Boulanger, Foothills Research Institute project manager Gordon Stenhouse, North Carolina State University zoologist Roger Powell, and Powell’s former graduate student Melissa Reynolds-Hogland.

For more information, contact:
Marc Cattet
U of S Professional Research Associate and Adjunct Professor
Western College of Veterinary Medicine
(306) 966-2162

Kathryn Warden | Newswise Science News
Further information:

Further reports about: black bears grizzly bears muscle enzymes muscle injury

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>