Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Captive breeding introduced infectious disease to Mallorcan amphibians

23.09.2008
A potentially deadly fungus that can kill frogs and toads was inadvertently introduced into Mallorca by a captive breeding programme that was reintroducing a rare species of toad into the wild, according to a new study published today in the journal Current Biology.

The study, by researchers from Imperial College London and international colleagues, reveals that captive Mallorcan midwife toads released into the wild in 1991 were infected with the chytrid fungus Batrachochytrium dendrobatidis (Bd). Measures to screen the health of the toads did not pick up the fungus, because at the time it was not known to science.

The chytrid fungus, which lives in the water and on the skin of host amphibians such as frogs, toads, salamanders and newts, has been known to cause amphibian population extinctions in Europe. Globally, the disease has been found in over 87 countries and has driven rapid amphibian declines in areas including Australia and Central America, pushing some species to extinction. Bd is currently rare in the UK, having only been detected in three locations.

The new study suggests that an endangered species of frog from South Africa, Xenopus gilli, which was housed in the same room as the Mallorcan midwife toads, was responsible for spreading the infection to them.

The captive breeding and reintroduction programme for the Mallorcan midwife toad has been highly successful in increasing the numbers of the rare toad on the island. Over half of all the current populations on Mallorca are derived from reintroductions.

Although the chytrid fungus can be deadly, toads appear to be doing well in three out of the four populations in Mallorca infected with the chytrid fungus. This finding suggests that there are unidentified factors that are preventing these populations from extinction. The situation is being closely monitored by the Mallorcan conservation authorities.

Global efforts to save amphibians from extinction hinge on species being taken into captivity and bred until they can be reintroduced to the wild. The researchers behind the new study say their findings reveal the risks of reintroducing species into the wild even when health screening is carried out, and highlight the need to ensure that species bred in captivity do not become infected with pathogens from other species.

As soon as Bd was discovered in the late 1990s, screening for the disease was incorporated into amphibian conservation plans. Zoos are now moving towards breeding threatened frogs in strictly quarantined, biosecure facilities in an effort to prevent the disease spreading in captivity.

The chytrid fungus has also been added to a list of diseases that need to be quarantined compiled by the World Organisation for Animal Health. It is hoped that these quarantine measures will help those involved in conservation efforts to stop Bd from spreading further, by controlling the international trade in infected animals.

Dr Mat Fisher, one of the authors of the study from the Department of Infectious Disease Epidemiology at Imperial College London, said: "Our study has shown that species reintroduction programs can have unpredicted and unintended effects. However in this case we believe that the toads are going to survive the infection. The global conservation community is united in its goal of saving species from the effects of Bd and we now have international legislation which should prevent this disease being accidentally introduced into the wild."

The researchers reached their conclusions after comparing the specific genotype of Bd from infected wild toads from across Mallorca, and infected toads from mainland Spain, the UK and the rest of the world. They found that the disease in all Mallorcan toads was of the same genotype, and that this was a different genotype from those on mainland Europe and elsewhere.

Bd infects amphibians' skin and is thought to interfere with their ability to absorb water. Over 257 amphibian species are known to be affected by Bd. Some species are very susceptible and die quickly while others, which are more resistant, are carriers of the pathogen.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>