Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cannabis-like drugs could block pain without affecting brain

12.09.2008
A new type of drug could alleviate pain in a similar way to cannabis without affecting the brain, according to a new study published in the journal Pain on Monday 15 September.

The research demonstrates for the first time that cannabinoid receptors called CB2, which can be activated by cannabis use, are present in human sensory nerves in the peripheral nervous system, but are not present in a normal human brain.

Drugs which activate the CB2 receptors are able to block pain by stopping pain signals being transmitted in human sensory nerves, according to the study, led by researchers from Imperial College London.

Previous studies have mainly focused on the other receptor activated by cannabis use, known as CB1, which was believed to be the primary receptor involved in pain relief. However, as CB1 receptors are found in the brain, taking drugs which activate these receptors can lead to side-effects, such as drowsiness, dependence and psychosis, and also recreational abuse.

The new research indicates that drugs targeting CB2 receptors offer a new way of treating pain in clinical conditions where there are currently few effective or safe treatments, such as chronic pain caused by osteoarthritis and pain from nerve damage. It could also provide an alternative treatment for acute pain, such as that experienced following surgical operations.

The new study showed that CB2 receptors work to block pain with a mechanism similar to the one which opiate receptors use when activated by the powerful painkilling drug morphine. They hope that drugs which target CB2 might provide an alternative to morphine, which can have serious side effects such as dependency, nausea and vomiting.

Praveen Anand, Professor of Clinical Neurology and Principal Investigator of the study from the Division of Neurosciences and Mental Health at Imperial College London, said: ”Although cannabis is probably best known as an illegal recreational drug, people have used it for medicinal purposes for centuries. Queen Victoria used it in tea to help with her period pains, and people with a variety of conditions say that it helps alleviate their symptoms.

“Our new study is very promising because it suggests that we could alleviate pain by targeting the cannabinoid receptor CB2 without causing the kinds of side-effects we associate with people using cannabis itself.”

The researchers reached their conclusions after studying human sensory nerve cells in culture with CB2 receptor compounds provided by GlaxoSmithKline, and also injured nerves from patients with chronic pain.

The researchers are now planning to conduct clinical trials of drugs which target CB2 in patients with chronic pain at Imperial College Healthcare NHS Trust, which has integrated with Imperial College London to form the UK's first Academic Health Science Centre.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>