Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Wasting Due in Part to Tumor Factors That Block Muscle Repair, Study Shows

24.10.2013
- Cancer wasting causes 20-25 percent of cancer deaths.
- Tumor growth causes the condition, which has no treatment.
- This study shows that cancer wasting is due in part to tumor factors that block muscle repair, and it suggests a new avenue for treating the disease.

A new study reveals that tumors release factors into the bloodstream that inhibit the repair of damaged muscle fibers, and that this contributes to muscle loss during cancer wasting.

The condition, also called cancer cachexia, accompanies certain types of cancer, causes life-threatening loss of body weight and lean muscle mass, and is responsible for up to one-in-four cancer deaths. There is no treatment for the condition.

The study was led by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James), and it points to new strategies and new drug targets for treating cancer cachexia.

The findings were published in the Journal of Clinical Investigation.

The researchers looked at muscle stem cells, which are also called satellite cells. These cells are associated with muscle fibers and are essential for repairing damaged fibers. Normally, damage to muscle fibers causes these stem cells to proliferate and to differentiate into mature muscle cells. These muscle cells then fuse with damaged surrounding fibers to limit muscle wasting. This process is blocked during cancer cachexia, the researchers say.

“Our study showed that although muscle stem cells are activated during cachexia, factors released by the tumor block these cells from differentiating into muscle cells, which leaves them unable to repair cachectic muscle fibers,” says principal investigator Denis Guttridge, PhD, professor of molecular virology, immunology and medical genetics and a member of the OSUCCC – James Molecular Biology and Cancer Genetics Program.

“By identifying agents that overcome the block and allow muscle stem cells to differentiate, it might be possible to restore muscle mass and enhance the quality of life of cancer patients with cachexia,” he says.

For this study, Guttridge and his colleagues used animal models and tissue from cachectic pancreatic-cancer patients to identify factors in the muscle microenvironment that contribute to cancer cachexia. Key findings include:

Cachexia is associated with tumor-induced damage to skeletal muscle cells and tumor-induced proliferation of muscle stem cells;

Overexpression of the muscle stem cell factor, Pax7, blocks the cells’ ability to differentiate and promotes cancer-induced wasting;

The overexpression of Pax7 promotes cancer wasting by blocking the maturation of muscle cells and their fusion with surrounding fibers, which allows muscle to gain mass;

The overexpression of Pax7 is controlled by NF-kappa B (NF-kB), which has been shown to play multiple roles in cancer. In cachexia, NF-kB causes the deregulation of Pax7 expression, which in turn impairs differentiation of muscle progenitor cells and promotes muscle atrophy;

Because of its tissue specificity, Pax7 inhibition might offer an attractive therapy for cancer cachexia.

“For decades, studies in cachexia have focused on mechanisms that lead to muscle wasting from within skeletal muscle fibers,” Guttridge says. “Our study is the first to show proof of concept that events occurring outside the muscle fiber and within the muscle microenvironment also play a part in driving muscle wasting in cancer.”

Funding from the National Institutes of Health(NIH)/National Cancer Institute (grants CA097953, CA098466, CA124692) and the NIH/Center for Clinical and Translational Science (grant UL1TR000090) supported this research.

Other researchers involved in this study were first author Wei He, Jingxin Wang, Mark Bloomston, Peter Muscarella, Peter Nau, Nilay Shah, Matthew E.R. Butchbach and Katherine Ladner, The Ohio State University; Emanuele Berardi, Veronica M. Cardillo, Paola Aulino, Sergio Adamo, Dario Coletti, Sapienza University, Rome, Italy; Swarnali Acharyya, Memorial Sloan Kettering Cancer Center; Jennifer Thomas-Ahner, Federica Montanaro, Nationwide Children’s Hospital; Michael A. Rudnicki, Ottawa Health Research Institute, Ottawa, Ontario, Canada; Charles Keller, Oregon Health and Science University.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only four centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 228-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top cancer hospitals in the nation as ranked by U.S.News & World Report.

Contact: Darrell E. Ward, Wexner Medical Center Public Affairs and Media Relations,

614-293-3737, or Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>