Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Wasting Due in Part to Tumor Factors That Block Muscle Repair, Study Shows

24.10.2013
- Cancer wasting causes 20-25 percent of cancer deaths.
- Tumor growth causes the condition, which has no treatment.
- This study shows that cancer wasting is due in part to tumor factors that block muscle repair, and it suggests a new avenue for treating the disease.

A new study reveals that tumors release factors into the bloodstream that inhibit the repair of damaged muscle fibers, and that this contributes to muscle loss during cancer wasting.

The condition, also called cancer cachexia, accompanies certain types of cancer, causes life-threatening loss of body weight and lean muscle mass, and is responsible for up to one-in-four cancer deaths. There is no treatment for the condition.

The study was led by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James), and it points to new strategies and new drug targets for treating cancer cachexia.

The findings were published in the Journal of Clinical Investigation.

The researchers looked at muscle stem cells, which are also called satellite cells. These cells are associated with muscle fibers and are essential for repairing damaged fibers. Normally, damage to muscle fibers causes these stem cells to proliferate and to differentiate into mature muscle cells. These muscle cells then fuse with damaged surrounding fibers to limit muscle wasting. This process is blocked during cancer cachexia, the researchers say.

“Our study showed that although muscle stem cells are activated during cachexia, factors released by the tumor block these cells from differentiating into muscle cells, which leaves them unable to repair cachectic muscle fibers,” says principal investigator Denis Guttridge, PhD, professor of molecular virology, immunology and medical genetics and a member of the OSUCCC – James Molecular Biology and Cancer Genetics Program.

“By identifying agents that overcome the block and allow muscle stem cells to differentiate, it might be possible to restore muscle mass and enhance the quality of life of cancer patients with cachexia,” he says.

For this study, Guttridge and his colleagues used animal models and tissue from cachectic pancreatic-cancer patients to identify factors in the muscle microenvironment that contribute to cancer cachexia. Key findings include:

Cachexia is associated with tumor-induced damage to skeletal muscle cells and tumor-induced proliferation of muscle stem cells;

Overexpression of the muscle stem cell factor, Pax7, blocks the cells’ ability to differentiate and promotes cancer-induced wasting;

The overexpression of Pax7 promotes cancer wasting by blocking the maturation of muscle cells and their fusion with surrounding fibers, which allows muscle to gain mass;

The overexpression of Pax7 is controlled by NF-kappa B (NF-kB), which has been shown to play multiple roles in cancer. In cachexia, NF-kB causes the deregulation of Pax7 expression, which in turn impairs differentiation of muscle progenitor cells and promotes muscle atrophy;

Because of its tissue specificity, Pax7 inhibition might offer an attractive therapy for cancer cachexia.

“For decades, studies in cachexia have focused on mechanisms that lead to muscle wasting from within skeletal muscle fibers,” Guttridge says. “Our study is the first to show proof of concept that events occurring outside the muscle fiber and within the muscle microenvironment also play a part in driving muscle wasting in cancer.”

Funding from the National Institutes of Health(NIH)/National Cancer Institute (grants CA097953, CA098466, CA124692) and the NIH/Center for Clinical and Translational Science (grant UL1TR000090) supported this research.

Other researchers involved in this study were first author Wei He, Jingxin Wang, Mark Bloomston, Peter Muscarella, Peter Nau, Nilay Shah, Matthew E.R. Butchbach and Katherine Ladner, The Ohio State University; Emanuele Berardi, Veronica M. Cardillo, Paola Aulino, Sergio Adamo, Dario Coletti, Sapienza University, Rome, Italy; Swarnali Acharyya, Memorial Sloan Kettering Cancer Center; Jennifer Thomas-Ahner, Federica Montanaro, Nationwide Children’s Hospital; Michael A. Rudnicki, Ottawa Health Research Institute, Ottawa, Ontario, Canada; Charles Keller, Oregon Health and Science University.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only four centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 228-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top cancer hospitals in the nation as ranked by U.S.News & World Report.

Contact: Darrell E. Ward, Wexner Medical Center Public Affairs and Media Relations,

614-293-3737, or Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>