Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cancer drug screening technique more closely mirrors reality

15.03.2010
Improving on traditional screening tests for potential anti-cancer drugs, scientists at Dana-Farber Cancer Institute have developed a laboratory technique that more closely simulates the real-world conditions in which tumor cells mingle with the body's normal cells.

Because these neighboring cells – key components of what is known as the "tumor microenvironment" – can alter the effectiveness of anti-cancer drugs, the new technique may help researchers narrow the field of possible therapies more quickly and identify the most promising candidates more readily.

The technique, described in a study published online today by the journal Nature Medicine, can be used to study a wide variety of cancer cells that infiltrate an equally wide range of normal tissues, the authors say.

"Despite their often impressive results in the laboratory, for every 100 potential anti-cancer therapies administered in patients in clinical trials, only about eight prove safe and effective enough to receive Food and Drug Administration approval," says the study's senior author, Constantine Mitsiades, MD, PhD, of Dana-Farber. "This success rate is clearly not as high as we would like it to be, and one reason may be that so far we haven't had a good way to account, at the earliest stages of laboratory testing, for the impact of the tumor microenvironment on these drugs."

In conventional drug screenings, different types of cancer cells are exposed to hundreds or thousands of compounds under laboratory conditions in which only tumor cells are present. The compounds that prove best at killing tumor cells are then earmarked for further study.

A shortcoming of this approach, Mitsiades says, is that "in the human body, tumor cells don't grow in isolation, but come in contact with a wide variety of non-malignant cells. Many of these 'accessory' cells support one another through direct contact or by producing substances known as growth factors. Tumor cells can take advantage of these signals to fuel their own growth."

Evidence from a variety of studies suggests that these otherwise normal elements of the tumor microenvironment can impede the effectiveness of anti-cancer drugs and allow cancer to become resistant to different therapies – one of the biggest challenges in oncology.

To get a better understanding of this phenomenon and develop treatments to address it, Mitsiades and his colleagues developed a technique in which tumor and normal cells are "co-cultured" – that is, grown together – and exposed to hundreds or thousands of compounds in large-scale screening tests. In the technique, dubbed "cell-specific in vitro bioluminescence imaging," or CS-BLI, the cancer cells in each sample are equipped with a gene that makes them glow – a process unaffected by the normal cells nearby. By measuring the amount of light emitted by each sample after treatment, investigators can determine which compounds are most proficient at killing tumor cells, and whether this effectiveness changes when normal cells are around the tumor. (To make sure the candidate drugs aren't also killing normal cells, researchers can do a "counter-screen," in which they measure the effect of each compound on the normal cells.)

While there are other techniques for screening drug activity in co-cultures of malignant and normal cells, they either involve radioactivity or entail a time-consuming process of data capture and analysis, rendering them too cumbersome for large-scale studies, Mitsiades remarks.

With CS-BLI, Mitsiades and his colleagues have identified numerous compounds that acted powerfully against isolated samples of tumor cells but were significantly less effective against the same types of tumor cells co-cultured with non-malignant cells. Perhaps surprisingly, they also identified some compounds which are more effective against tumor cells mixed with non-malignant cells than against tumor cells alone.

In this latter category, researchers found a particular compound that was more active against myeloma tumor cells, both in laboratory cultures and mice, when the cells were in contact with healthy cells of the bone marrow – their usual location in patients. The compound also prevented the myeloma cells from responding to growth signals produced by the bone marrow cells. With conventional techniques, candidate drugs such as this one would have gone completely unnoticed, Mitsiades observes.

He emphasizes that CS-BLI is not a technique for predicting which anti-cancer agents will be effective in individual patients, but can help researchers identify which agents are the best prospects for additional investigation.

"It will be of use in prioritizing candidate drugs for further rigorous study of their properties before embarking on clinical trials," he remarks. "This technique may show that the classical methods of studying candidate cancer drugs in laboratory conditions have overestimated the effectiveness of some agents, and underestimated others.

"The technique also provides a powerful tool for determining which biological mechanisms allow cancers to become resistant to certain treatments and which new therapies can neutralize those mechanisms. Hopefully, combining such new therapies with other, established or investigational, treatments may contribute to improved success rates of clinical trials."

Funding for the study was provided by the Dunkin' Donuts Rising Stars program at Dana-Farber, the Chambers Medical Foundation, the Steven Cobb Foundation, and the National Institutes of Health.

The lead author of the study is Douglas McMillin, PhD, of Dana-Farber. Co-authors include Jake Delmore, Ellen Weisberg, PhD, Joseph Negri, D. Corey Geer, Steffen Klippel, PhD, Nicholas Mitsiades, MD, PhD, Robert Schlossman, MD, Nikhil Munshi, MD, Andrew Kung, MD, PhD, James Griffin, MD, Paul Richardson, MD, and Kenneth Anderson, MD, all of Dana-Farber.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Teresa Herbert | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>