Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cancer data not readily available for future research

Cancer studies less likely than other research fields to make data available for reuse

A new study finds that -- even in a field with clear standards and online databases -- the rate of public data archiving in cancer research is increasing only slowly. Furthermore, research studies in cancer and human subjects are less likely than other research studies to make their datasets available for reuse.

The results come from a study of patterns of research data availability conducted by Dr Heather Piwowar of the National Evolutionary Synthesis Center.

Data collected in scientific research is often useful for future studies by other investigators, but scientists have rarely made their raw research data widely available. Tools and initiatives are underway to encourage scientists to publicly archive their data. This analysis confirms there is still much room for improvement.

By querying the full text of the scientific literature through websites like Google Scholar and PubMed Central, Piwowar identified eleven thousand studies that collected a particular type of data about cellular activity, called gene expression microarray data. Only 45% of recent gene expression studies were found to have deposited their data in the public databases developed for this purpose. The rate of data publication has increased only slightly from 2007 to 2009. Data is shared least often from studies on cancer and human subjects: cancer studies make their data available for wide reuse half as often as similar studies outside cancer.

"It was disheartening to discover that studies on cancer and human subjects were least likely to make their data available. These data are surely some of the most valuable for reuse, to confirm, refute, inform and advance bench-to-bedside translational research," Piwowar said.

"We want as much scientific progress as we can get from our tax and charity dollars. This requires increased access to data resources. Data can be shared while maintaining patient privacy," Piwowar added, noting that patient re-identification is rarely an issue for gene expression microarray studies.

Most likely to share their data in public databases were investigators from Stanford University and those who published in the journal Physiological Genomics.

Scientist sometimes email each other to request datasets that aren't available online, but these requests often go unanswered or are denied by the original investigators. Publishing data in online data repositories is considered the best way to share data for future reuse.

Recent policies by the NSF seek to increase the amount of data disseminated from federally-funded research by requiring data management and dissemination plans in all new grant applications.

The findings were published July 13th in the open access journal PLoS ONE.

CITATION: Piwowar, H. (2011). "Who shares? Who doesn't? Factors associated with openly archiving raw research data." PLoS ONE 6(7): e18657. doi:18610.11371/journal.pone.0018657

In the spirit of the topic, the raw data behind this study are publicly available in the Dryad Digital Repository at

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit

Heather Piwowar | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>