Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All cancer cells are not created equal

16.05.2012
Some cell types control continued tumor growth, others prepare the way for metastasis

A study from Massachusetts General Hospital (MGH) researchers suggests that specific populations of tumor cells have different roles in the process by which tumors make new copies of themselves and grow.

In their report in the May 15 issue of Cancer Cell, researchers identify a tumor-propagating cell required for the growth of a pediatric muscle tumor in a zebrafish model and also show that another, more-differentiated tumor cell must first travel to sites of new tumor growth to prepare an environment that supports metastatic growth.

"Most investigators have thought that tumor-propagating cells – what are sometimes called cancer stem cells – must be the first colonizing cells that travel from the primary tumor to start the process of local invasion and metastasis, but in this model, this is simply not the case," says David Langenau, PhD, of the MGH Department of Pathology and Center for Cancer Research, who led the study.

"Instead, the colonizing cells lack the ability to divide and instead prime newly infiltrated regions for the eventual recruitment of slow-moving cancer stem cells. It will be important to test how broadly this phenomenon is found in a diversity of animal and human cancers."

Langenau's team has long been using zebrafish to study rhabdomyosarcoma (RMS), an aggressive pediatric cancer. In embryonic zebrafish, RMS can develop within 10 days, and since the tiny fish are transparent at that stage, fluorescent markers attached to particular cellular proteins can easily be imaged. The current study used these properties to monitor how specific populations of tumor cells develop and their role in initiating new tumor growth.

Previous research from the MGH team had discovered that RMS cells expressing marker proteins also seen on muscle progenitor cells had significantly more tumor-propagating potential than did other tumor cells. Fluorescently labeling proteins associated with different stages of cellular differentiation revealed distinct populations of RMS cells in the zebrafish model. Cells expressing the progenitor cell marker myf5, were labeled green, and those expressing myogenin, a marker of mature muscle cells, were labeled red.

In a series of experiments, the research team confirmed that myf5-expressing RMS cells had powerful tumor-propagating potential, but the ability to visualize how tumor cells move in living fish produced a surprising observation. While myf5-expressing cells largely remained within the primary tumor itself, myogenin-expressing RMS cells easily moved out from the tumor, entering the vascular system and passing through usually impenetrable layers of collagen. Only after the more-differentiated but non-proliferative myogenin-expressing cells had colonized an area did the myf5-expressing tumor-propagating cells appear and start the growth a new tumor. Imaging the labeled tumor cells also revealed that different cellular populations tended to cluster in different areas of later-stage tumors.

"Our direct in-vivo imaging studies are the first to suggest such diverse cellular functions in solid tumors, based on differentiation and the propensity for self-renewal," says Myron Ignatius, PhD, of MGH Pathology and Center for Cancer Research, the study's first author. "I think we will find that this kind of division of labor is a common theme in cancer, especially given that the vast majority of cells within a tumor are not tumor-propagating cells. We suspect there will be molecularly defined populations that make niches for tumor-propagating cells, secrete factors to recruit vasculature and create boundaries to suppress immune cell invasion."

Langenau adds, "Division of labor is a new and emerging concept in cancer research that we hope will lead to new targets for rationally designed therapies. In rhabdomyosarcoma it will be important to target both the tumor-propagating cells and the highly migratory colonizing cells for distruction – a major focus of ongoing studies in our group." Langenau is an assistant professor of Genetics at Harvard Medical School and a principal faculty mmber at the Harvard Stem Cell Institute.

Additional co-authors author of the Cancer Cell article are Eleanor Chen, Adam Fuller, Ines Tenente Rayn Clagg, Sali Liu, Jessica Blackburn, MGH Pathology and Center for Cancer Research; Andrew Rosenberg, and Petur Neilsen, MGH Pathology; Natalie Elpek and Thorsten Mempel, MGH Center for Immunology and Inflammatory Diseases; and Corinne Linardic, Duke University Medical Center. The study was supported by grants from the National Institute of Health, the Alex's Lemonade Stand Foundation, the Sarcoma Foundation of America, the American Cancer Society and the Harvard Stem Cell Institute.

Massachusetts General Hospital (www.massgeneral.org), founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>